Siyu Wang, Yiwen Yang, Sijia Hao, Yanhui Sun, Hao Wang
{"title":"Glutamatergic Periaqueductal Gray Projections to the Locus Coeruleus Orchestrate Adaptive Arousal States in Threatening Contexts.","authors":"Siyu Wang, Yiwen Yang, Sijia Hao, Yanhui Sun, Hao Wang","doi":"10.1007/s12264-025-01491-4","DOIUrl":null,"url":null,"abstract":"<p><p>The locus coeruleus (LC), a norepinephrine nucleus governing arousal states through tonic activity, requires precise regulatory mechanisms to maintain its dynamic activation levels. However, the neural circuitry underlying LC activity maintenance remains unclear. Here, we identify a glutamatergic projection from the ventrolateral periaqueductal gray (vlPAG) to the LC in mice as a critical regulator of arousal dynamics. Fiber photometry recordings revealed stress-induced Ca<sup>2+</sup> dynamics in vlPAG<sup>CaMKIIα</sup>-LC axon terminals across diverse threat paradigms. Slice electrophysiology demonstrated that this pathway mediates LC-norepinephrine (LC-NE) neuronal activity via glutamatergic transmission. Low-frequency pathway activation (1 Hz) mainly induced anxiety-like behaviors, whereas high-frequency stimulation (10 Hz) evoked more panic-like hyperlocomotion, establishing a frequency-dependent continuum of arousal states. Conversely, pathway inhibition reduced pupil size, a reliable biomarker for arousal, concurrently suppressing threat avoidance behaviors and alleviating anxiety-related behaviors without altering environmental preference. These findings reveal that the vlPAG<sup>CaMKIIα</sup>-LC pathway maintains baseline arousal while dynamically scaling threat-induced hyperarousal.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12264-025-01491-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The locus coeruleus (LC), a norepinephrine nucleus governing arousal states through tonic activity, requires precise regulatory mechanisms to maintain its dynamic activation levels. However, the neural circuitry underlying LC activity maintenance remains unclear. Here, we identify a glutamatergic projection from the ventrolateral periaqueductal gray (vlPAG) to the LC in mice as a critical regulator of arousal dynamics. Fiber photometry recordings revealed stress-induced Ca2+ dynamics in vlPAGCaMKIIα-LC axon terminals across diverse threat paradigms. Slice electrophysiology demonstrated that this pathway mediates LC-norepinephrine (LC-NE) neuronal activity via glutamatergic transmission. Low-frequency pathway activation (1 Hz) mainly induced anxiety-like behaviors, whereas high-frequency stimulation (10 Hz) evoked more panic-like hyperlocomotion, establishing a frequency-dependent continuum of arousal states. Conversely, pathway inhibition reduced pupil size, a reliable biomarker for arousal, concurrently suppressing threat avoidance behaviors and alleviating anxiety-related behaviors without altering environmental preference. These findings reveal that the vlPAGCaMKIIα-LC pathway maintains baseline arousal while dynamically scaling threat-induced hyperarousal.
期刊介绍:
Neuroscience Bulletin (NB), the official journal of the Chinese Neuroscience Society, is published monthly by Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Springer.
NB aims to publish research advances in the field of neuroscience and promote exchange of scientific ideas within the community. The journal publishes original papers on various topics in neuroscience and focuses on potential disease implications on the nervous system. NB welcomes research contributions on molecular, cellular, or developmental neuroscience using multidisciplinary approaches and functional strategies. We feature full-length original articles, reviews, methods, letters to the editor, insights, and research highlights. As the official journal of the Chinese Neuroscience Society, which currently has more than 12,000 members in China, NB is devoted to facilitating communications between Chinese neuroscientists and their international colleagues. The journal is recognized as the most influential publication in neuroscience research in China.