Microglia regulate neuronal activity via structural remodeling of astrocytes.

IF 15 1区 医学 Q1 NEUROSCIENCES
Ning Gu, Olena Makashova, Celeste Laporte, Chris Qilongyue Chen, Banruo Li, Pierre-Marie Chevillard, Graham Lean, Jieyi Yang, Calvin Wong, Jonathan Fan, Behrang Sharif, Susana Puche Saud, Misha Hubacek, Katrina Y Choe, Margaret M McCarthy, Arkady Khoutorsky, Charles W Bourque, Masha Prager-Khoutorsky
{"title":"Microglia regulate neuronal activity via structural remodeling of astrocytes.","authors":"Ning Gu, Olena Makashova, Celeste Laporte, Chris Qilongyue Chen, Banruo Li, Pierre-Marie Chevillard, Graham Lean, Jieyi Yang, Calvin Wong, Jonathan Fan, Behrang Sharif, Susana Puche Saud, Misha Hubacek, Katrina Y Choe, Margaret M McCarthy, Arkady Khoutorsky, Charles W Bourque, Masha Prager-Khoutorsky","doi":"10.1016/j.neuron.2025.07.024","DOIUrl":null,"url":null,"abstract":"<p><p>Neuron-glia interactions play a central role in regulating synaptic transmission and neuronal excitability. The structural plasticity of astrocytes is associated with numerous physiological and pathological conditions; however, the mechanism underlying this process remains unknown. To examine the basis for structural astrocyte plasticity, we used the classic example of the loss of astrocytic processes that takes place in the rat hypothalamic magnocellular system during chronic high-salt intake. We discovered that a high-salt diet triggers a local accumulation of reactive microglia around vasopressin-secreting neurons but not in other brain areas. Microglia phagocytose astrocytic processes, reducing astrocytic coverage of vasopressin neurons. The pruning of astrocytic processes impairs synaptic glutamate clearance, enabling activation of extrasynaptic glutamate NMDA receptors and increasing the activity of vasopressin neurons. Inhibiting microglia-mediated astrocyte pruning attenuates the increased neuronal activity and vasopressin-dependent hypertensive phenotype of rats fed a high-salt diet. Thus, microglia orchestrate neuron-glia interactions and regulate neuronal activity through astrocyte pruning.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":15.0000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2025.07.024","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Neuron-glia interactions play a central role in regulating synaptic transmission and neuronal excitability. The structural plasticity of astrocytes is associated with numerous physiological and pathological conditions; however, the mechanism underlying this process remains unknown. To examine the basis for structural astrocyte plasticity, we used the classic example of the loss of astrocytic processes that takes place in the rat hypothalamic magnocellular system during chronic high-salt intake. We discovered that a high-salt diet triggers a local accumulation of reactive microglia around vasopressin-secreting neurons but not in other brain areas. Microglia phagocytose astrocytic processes, reducing astrocytic coverage of vasopressin neurons. The pruning of astrocytic processes impairs synaptic glutamate clearance, enabling activation of extrasynaptic glutamate NMDA receptors and increasing the activity of vasopressin neurons. Inhibiting microglia-mediated astrocyte pruning attenuates the increased neuronal activity and vasopressin-dependent hypertensive phenotype of rats fed a high-salt diet. Thus, microglia orchestrate neuron-glia interactions and regulate neuronal activity through astrocyte pruning.

小胶质细胞通过星形胶质细胞的结构重塑调节神经元活动。
神经元-神经胶质相互作用在调节突触传递和神经元兴奋性中起核心作用。星形胶质细胞的结构可塑性与许多生理和病理条件有关;然而,这一过程的机制尚不清楚。为了研究星形胶质细胞结构可塑性的基础,我们使用了慢性高盐摄入期间大鼠下丘脑大细胞系统中星形胶质细胞过程丢失的经典例子。我们发现,高盐饮食会在分泌抗利尿激素的神经元周围引发反应性小胶质细胞的局部积累,而在大脑的其他区域则不会。小胶质细胞吞噬星形细胞过程,减少加压素神经元的星形细胞覆盖。星形细胞过程的修剪损害突触谷氨酸清除,使突触外谷氨酸NMDA受体激活,并增加加压素神经元的活性。抑制小胶质细胞介导的星形胶质细胞修剪可减弱高盐饮食大鼠增加的神经元活性和血管加压素依赖性高血压表型。因此,小胶质细胞通过星形胶质细胞修剪来协调神经元与胶质细胞的相互作用并调节神经元的活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuron
Neuron 医学-神经科学
CiteScore
24.50
自引率
3.10%
发文量
382
审稿时长
1 months
期刊介绍: Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信