Retention of a SulP-family bicarbonate transporter in a periplasmic N2-fixing cyanobacterial endosymbiont of an open ocean diatom.

Mercedes Nieves-Morión,Rubén Romero-García,Sepehr Bardi,Luis López-Maury,Martin Hagemann,Enrique Flores,Rachel A Foster
{"title":"Retention of a SulP-family bicarbonate transporter in a periplasmic N2-fixing cyanobacterial endosymbiont of an open ocean diatom.","authors":"Mercedes Nieves-Morión,Rubén Romero-García,Sepehr Bardi,Luis López-Maury,Martin Hagemann,Enrique Flores,Rachel A Foster","doi":"10.1093/ismejo/wraf202","DOIUrl":null,"url":null,"abstract":"Symbioses between diatoms and the N2-fixing, heterocyst-forming cyanobacterium Richelia spp. are widespread and contribute to primary production. Unique to these symbioses is a variation in the symbiont location: one lives in the host cytoplasm (endobiont) vs. residing between the host frustule and plasmalemma (periplasmic endobiont). Both partners are photosynthetic, yet how the partners acquire, share, or compete for bicarbonate necessary for their photosynthesis is unknown. The genomes of both endobionts (ReuHH01 and RintRC01, respectively) contain genes encoding SulP-family proteins, which are oxyanion transporters. To study the possible involvement of these transporters in bicarbonate uptake, we used complementation in a Synechocystis sp. PCC 6803 mutant that is unable to grow at air levels of CO2 because all five of its inorganic carbon uptake systems have been inactivated. Of the five genes tested, only one (RintRC_3892) from the periplasmic endobiont complemented the mutant to grow with air levels of CO2 or at low bicarbonate concentrations. The complemented strain showed strong sodium-dependent and low-affinity bicarbonate uptake that was consistent with bicarbonate concentrations expected in the diatom periplasm. Additionally, all the amino acids involved in the bicarbonate binding site of BicA from Synechocystis sp. PCC 6803 are conserved in RintRC_3892. Finally, the importance of the RintRC_3892 protein was confirmed by the consistent detection of its transcripts in wild Richelia populations from three different oceans. Combined our results showed no evidence for a bicarbonate transporter in the cytoplasmic endobiont, whereas the periplasmic endobiont has retained a SulP-type bicarbonate transporter for its own photosynthesis.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wraf202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Symbioses between diatoms and the N2-fixing, heterocyst-forming cyanobacterium Richelia spp. are widespread and contribute to primary production. Unique to these symbioses is a variation in the symbiont location: one lives in the host cytoplasm (endobiont) vs. residing between the host frustule and plasmalemma (periplasmic endobiont). Both partners are photosynthetic, yet how the partners acquire, share, or compete for bicarbonate necessary for their photosynthesis is unknown. The genomes of both endobionts (ReuHH01 and RintRC01, respectively) contain genes encoding SulP-family proteins, which are oxyanion transporters. To study the possible involvement of these transporters in bicarbonate uptake, we used complementation in a Synechocystis sp. PCC 6803 mutant that is unable to grow at air levels of CO2 because all five of its inorganic carbon uptake systems have been inactivated. Of the five genes tested, only one (RintRC_3892) from the periplasmic endobiont complemented the mutant to grow with air levels of CO2 or at low bicarbonate concentrations. The complemented strain showed strong sodium-dependent and low-affinity bicarbonate uptake that was consistent with bicarbonate concentrations expected in the diatom periplasm. Additionally, all the amino acids involved in the bicarbonate binding site of BicA from Synechocystis sp. PCC 6803 are conserved in RintRC_3892. Finally, the importance of the RintRC_3892 protein was confirmed by the consistent detection of its transcripts in wild Richelia populations from three different oceans. Combined our results showed no evidence for a bicarbonate transporter in the cytoplasmic endobiont, whereas the periplasmic endobiont has retained a SulP-type bicarbonate transporter for its own photosynthesis.
sulp家族碳酸氢盐转运体在开放海洋硅藻的质周固定n2的蓝藻内共生体中的保留。
硅藻与固定氮、形成异囊的蓝藻Richelia spp.之间的共生关系广泛存在,并有助于初级生产。这些共生体的独特之处在于共生体位置的变化:一种生活在宿主细胞质中(内生体),另一种生活在宿主胞体和质膜之间(质周内生体)。双方都在进行光合作用,但它们是如何获得、分享或竞争光合作用所需的碳酸氢盐的尚不清楚。这两种内生菌(分别为ReuHH01和RintRC01)的基因组都含有编码sulp家族蛋白的基因,这是一种氧阴离子转运蛋白。为了研究这些转运体在碳酸氢盐吸收中的可能参与,我们对一个聚胞藻(Synechocystis sp. PCC 6803)突变体进行了互补,该突变体在空气中的二氧化碳水平下无法生长,因为它的五个无机碳吸收系统都已失活。在测试的五个基因中,只有一个来自质周内生菌的基因(RintRC_3892)与突变体互补,可以在空气中的二氧化碳水平或低碳酸氢盐浓度下生长。补充菌株表现出强烈的钠依赖性和低亲和力的碳酸氢盐摄取,这与硅藻周质中预期的碳酸氢盐浓度一致。此外,Synechocystis sp. PCC 6803 BicA的碳酸氢盐结合位点的所有氨基酸在RintRC_3892中都是保守的。最后,RintRC_3892蛋白的重要性通过在三个不同海洋的黎切菌野生种群中一致检测到其转录本得到证实。综合我们的研究结果表明,没有证据表明细胞质内生物中存在碳酸氢盐转运体,而质周内生物为其自身的光合作用保留了sulp型碳酸氢盐转运体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信