Karoline Moe,Eivind Schjelderup Skarpsno,Tom Ivar Lund Nilsen,Silje L Kaspersen,Solveig Osborg Ose,David Carslake,Paul Jarle Mork,Lene Aasdahl
{"title":"An instrumental variable analysis of body mass index and risk of long-term sick leave: the HUNT Study, Norway.","authors":"Karoline Moe,Eivind Schjelderup Skarpsno,Tom Ivar Lund Nilsen,Silje L Kaspersen,Solveig Osborg Ose,David Carslake,Paul Jarle Mork,Lene Aasdahl","doi":"10.1007/s10654-025-01299-6","DOIUrl":null,"url":null,"abstract":"A more comprehensive understanding of the causal relationships between body mass index (BMI) and sick leave is needed. We aimed to examine the effect of BMI on the risk of cause-specific and all-cause long-term sick leave using an instrumental variable approach. The study included 21,918 adults participating in the two latest surveys of the population-based HUNT Study (HUNT3, 2006-2008 and HUNT4, 2017-2019) linked with registry data on cause-specific sick leave, including musculoskeletal and mental disorders. We used Cox regression to estimate risk of long-term sick leave per standard deviation (SD) increase in z-score of BMI, applying both conventional analysis of own BMI and instrumental variable analysis based on offspring BMI. In the conventional analyses, hazard ratios per SD increase in z-score of BMI ranged from 1.04 (95% confidence interval (CI) 0.99-1.08) for mental health disorders in women to 1.17 (95% CI 1.13-1.22) for musculoskeletal disorders in men. The instrumental variable approach supported that higher BMI increased the risk of long-term sick leave, except for sick leave due to mental health disorders in men. The analyses suggested that offspring BMI as an instrument is not independent of shared confounding. The results from both the conventional and instrumental variable analyses show that higher BMI increases the risk of long-term sick leave, except for sick leave due to mental health disorders in men. The instrumental variable method is likely to remove bias due to reverse causation, but residual bias due to shared confounding factors cannot be ruled out.","PeriodicalId":11907,"journal":{"name":"European Journal of Epidemiology","volume":"15 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10654-025-01299-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
A more comprehensive understanding of the causal relationships between body mass index (BMI) and sick leave is needed. We aimed to examine the effect of BMI on the risk of cause-specific and all-cause long-term sick leave using an instrumental variable approach. The study included 21,918 adults participating in the two latest surveys of the population-based HUNT Study (HUNT3, 2006-2008 and HUNT4, 2017-2019) linked with registry data on cause-specific sick leave, including musculoskeletal and mental disorders. We used Cox regression to estimate risk of long-term sick leave per standard deviation (SD) increase in z-score of BMI, applying both conventional analysis of own BMI and instrumental variable analysis based on offspring BMI. In the conventional analyses, hazard ratios per SD increase in z-score of BMI ranged from 1.04 (95% confidence interval (CI) 0.99-1.08) for mental health disorders in women to 1.17 (95% CI 1.13-1.22) for musculoskeletal disorders in men. The instrumental variable approach supported that higher BMI increased the risk of long-term sick leave, except for sick leave due to mental health disorders in men. The analyses suggested that offspring BMI as an instrument is not independent of shared confounding. The results from both the conventional and instrumental variable analyses show that higher BMI increases the risk of long-term sick leave, except for sick leave due to mental health disorders in men. The instrumental variable method is likely to remove bias due to reverse causation, but residual bias due to shared confounding factors cannot be ruled out.
期刊介绍:
The European Journal of Epidemiology, established in 1985, is a peer-reviewed publication that provides a platform for discussions on epidemiology in its broadest sense. It covers various aspects of epidemiologic research and statistical methods. The journal facilitates communication between researchers, educators, and practitioners in epidemiology, including those in clinical and community medicine. Contributions from diverse fields such as public health, preventive medicine, clinical medicine, health economics, and computational biology and data science, in relation to health and disease, are encouraged. While accepting submissions from all over the world, the journal particularly emphasizes European topics relevant to epidemiology. The published articles consist of empirical research findings, developments in methodology, and opinion pieces.