The peripheral PI3K/AKT/MLC signalling pathway alleviates myofascial pain in rats by inhibiting abnormal contraction at myofascial trigger points.

IF 2.8 3区 医学 Q2 NEUROSCIENCES
Molecular Pain Pub Date : 2025-01-01 Epub Date: 2025-08-26 DOI:10.1177/17448069251376205
Mingyang Zhang, Yuchang Zhu, Feihong Jin, Yu Liu, Luhua Yin
{"title":"The peripheral PI3K/AKT/MLC signalling pathway alleviates myofascial pain in rats by inhibiting abnormal contraction at myofascial trigger points.","authors":"Mingyang Zhang, Yuchang Zhu, Feihong Jin, Yu Liu, Luhua Yin","doi":"10.1177/17448069251376205","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Myofascial trigger points (MTrPs) for abnormal skeletal muscle contraction are the cause of myofascial pain. The G protein-coupled receptor family and tyrosine kinase receptor family regulate the contraction of vascular smooth muscle through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway. Phosphorylated myosin light chain (p-MLC) is associated with skeletal muscle contraction. The aim of the current study was to explore the effect and mechanism of the PI3K/AKT/MLC signalling pathway on myofascial pain in rats.</p><p><strong>Methods: </strong>A rat model of myofascial pain was established by a blunt strike to the gastrocnemius muscle combined with centrifugal exercise for 8 weeks, followed by recovery for 4 weeks. Different concentrations of the PI3K inhibitor LY294002 (0.01, 0.1, or 1 mg/ml) were subsequently injected into the MTrPs of rats with myofascial pain to observe the effects on the mechanical tenderness threshold at the MTrPs.</p><p><strong>Results: </strong>LY294002 (0.1 mg/ml) inhibited myofascial pain at 0.5, 1 and 2 h after injection, and LY294002 (1 mg/ml) inhibited myofascial pain at 0.5, 1, 2 and 4 h after injection. The expression of PI3K increased on the enlarged muscle fibre membrane at MTrPs. LY294002 (1 mg/ml) inhibited the expression of PI3K, p-AKT, and p-MLC and the abnormal contraction of muscle fibres at MTrPs and alleviated nerve fibre compression at MTrPs. Moreover, LY294002 inhibited the expression of Fos in the spinal dorsal horn of rats with myofascial pain.</p><p><strong>Conclusions: </strong>These findings suggested that the increased expression of PI3K/p-AKT/p-MLC was related to myofascial pain in rats and that the PI3K inhibitor LY294002 might alleviate myofascial pain in rats by inhibiting abnormal contraction at MTrPs.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":" ","pages":"17448069251376205"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12461083/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/17448069251376205","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Myofascial trigger points (MTrPs) for abnormal skeletal muscle contraction are the cause of myofascial pain. The G protein-coupled receptor family and tyrosine kinase receptor family regulate the contraction of vascular smooth muscle through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway. Phosphorylated myosin light chain (p-MLC) is associated with skeletal muscle contraction. The aim of the current study was to explore the effect and mechanism of the PI3K/AKT/MLC signalling pathway on myofascial pain in rats.

Methods: A rat model of myofascial pain was established by a blunt strike to the gastrocnemius muscle combined with centrifugal exercise for 8 weeks, followed by recovery for 4 weeks. Different concentrations of the PI3K inhibitor LY294002 (0.01, 0.1, or 1 mg/ml) were subsequently injected into the MTrPs of rats with myofascial pain to observe the effects on the mechanical tenderness threshold at the MTrPs.

Results: LY294002 (0.1 mg/ml) inhibited myofascial pain at 0.5, 1 and 2 h after injection, and LY294002 (1 mg/ml) inhibited myofascial pain at 0.5, 1, 2 and 4 h after injection. The expression of PI3K increased on the enlarged muscle fibre membrane at MTrPs. LY294002 (1 mg/ml) inhibited the expression of PI3K, p-AKT, and p-MLC and the abnormal contraction of muscle fibres at MTrPs and alleviated nerve fibre compression at MTrPs. Moreover, LY294002 inhibited the expression of Fos in the spinal dorsal horn of rats with myofascial pain.

Conclusions: These findings suggested that the increased expression of PI3K/p-AKT/p-MLC was related to myofascial pain in rats and that the PI3K inhibitor LY294002 might alleviate myofascial pain in rats by inhibiting abnormal contraction at MTrPs.

EXPRESS:外周PI3K/AKT/MLC信号通路通过抑制肌筋膜触发点异常收缩来减轻大鼠肌筋膜疼痛。
背景:骨骼肌异常收缩的肌筋膜触发点(MTrPs)是肌筋膜疼痛的原因。G蛋白偶联受体家族和酪氨酸激酶受体家族通过磷脂酰肌醇3-激酶(PI3K)/蛋白激酶B (AKT)途径调控血管平滑肌收缩。磷酸化肌球蛋白轻链(p-MLC)与骨骼肌收缩有关。本研究旨在探讨PI3K/AKT/MLC信号通路在大鼠肌筋膜疼痛中的作用及其机制。方法:采用钝击腓肠肌联合离心运动建立大鼠肌筋膜疼痛模型,持续8周,恢复4周。随后将不同浓度的PI3K抑制剂LY294002(0.01、0.1、1 mg/ml)注射到肌筋膜疼痛大鼠的MTrPs中,观察其对MTrPs处机械压痛阈值的影响。结果:LY294002 (0.1 mg/ml)在注射后0.5、1、2 h抑制肌筋膜疼痛,LY294002 (1 mg/ml)在注射后0.5、1、2、4 h抑制肌筋膜疼痛。PI3K在MTrPs增大的肌纤维膜上表达增加。LY294002 (1 mg/ml)抑制PI3K、p-AKT和p-MLC的表达,抑制MTrPs肌纤维异常收缩,减轻MTrPs神经纤维受压。LY294002可抑制肌筋膜疼痛大鼠脊髓背角Fos的表达。结论:上述结果提示PI3K/p-AKT/p-MLC的表达增加与大鼠肌筋膜疼痛有关,PI3K抑制剂LY294002可能通过抑制mtrp异常收缩来减轻大鼠肌筋膜疼痛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Pain
Molecular Pain 医学-神经科学
CiteScore
5.60
自引率
3.00%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Molecular Pain is a peer-reviewed, open access journal that considers manuscripts in pain research at the cellular, subcellular and molecular levels. Molecular Pain provides a forum for molecular pain scientists to communicate their research findings in a targeted manner to others in this important and growing field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信