Oula K Dagher, Martin Pedard, Darel Martinez Bedoya, Shawna K Brookens, Denis Migliorini, Avery D Posey
{"title":"Preclinical efficacy of multi-targeting mRNA-based CAR T cell therapy in resection models of glioblastoma.","authors":"Oula K Dagher, Martin Pedard, Darel Martinez Bedoya, Shawna K Brookens, Denis Migliorini, Avery D Posey","doi":"10.1016/j.omtn.2025.102676","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional viral-based chimeric antigen receptor (CAR) T cell therapies have vanquished multiple blood malignancies with decade-long remissions yet struggle against solid tumors. Nonviral engineering of CAR T cells via electroporation or lipid nanoparticle (LNP) delivery of CAR-encoding mRNA results in highly efficient yet transient CAR expression, challenging the adequacy of available preclinical models for mRNA-based CAR T cell evaluation. This study presents a unique three-pronged approach that combines mRNA-based CAR T cells, multi-targeting of glioblastoma (GBM)-associated receptors, and maximal surgical resection as a novel and readily translatable platform for preclinical evaluation of mRNA-based CAR T cells against solid tumors. We performed head-to-head <i>in vitro</i> and <i>in vivo</i> analyses of mRNA-based CAR T cells generated using different expansion conditions, mRNA delivery methods, or combination approaches. Besides potent <i>in vitro</i> cytotoxicity, our findings unveil a therapeutic window of anti-tumor efficacy, as well as robust and durable complete remissions in xenograft mouse models of GBM receiving maximal surgical resection and locoregional injections of multivalent CAR T cells (MVCAR). Such efficacies were significantly better in 5-day expanded versus quiescent T cells. Interestingly, MVCAR T cells were superior to pooled CAR T cells (CARPool) expressing the same CAR scFv combinations in an orthotopic resection model of GBM.</p>","PeriodicalId":18821,"journal":{"name":"Molecular Therapy. Nucleic Acids","volume":"36 3","pages":"102676"},"PeriodicalIF":6.1000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12397939/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy. Nucleic Acids","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtn.2025.102676","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/9 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional viral-based chimeric antigen receptor (CAR) T cell therapies have vanquished multiple blood malignancies with decade-long remissions yet struggle against solid tumors. Nonviral engineering of CAR T cells via electroporation or lipid nanoparticle (LNP) delivery of CAR-encoding mRNA results in highly efficient yet transient CAR expression, challenging the adequacy of available preclinical models for mRNA-based CAR T cell evaluation. This study presents a unique three-pronged approach that combines mRNA-based CAR T cells, multi-targeting of glioblastoma (GBM)-associated receptors, and maximal surgical resection as a novel and readily translatable platform for preclinical evaluation of mRNA-based CAR T cells against solid tumors. We performed head-to-head in vitro and in vivo analyses of mRNA-based CAR T cells generated using different expansion conditions, mRNA delivery methods, or combination approaches. Besides potent in vitro cytotoxicity, our findings unveil a therapeutic window of anti-tumor efficacy, as well as robust and durable complete remissions in xenograft mouse models of GBM receiving maximal surgical resection and locoregional injections of multivalent CAR T cells (MVCAR). Such efficacies were significantly better in 5-day expanded versus quiescent T cells. Interestingly, MVCAR T cells were superior to pooled CAR T cells (CARPool) expressing the same CAR scFv combinations in an orthotopic resection model of GBM.
期刊介绍:
Molecular Therapy Nucleic Acids is an international, open-access journal that publishes high-quality research in nucleic-acid-based therapeutics to treat and correct genetic and acquired diseases. It is the official journal of the American Society of Gene & Cell Therapy and is built upon the success of Molecular Therapy. The journal focuses on gene- and oligonucleotide-based therapies and publishes peer-reviewed research, reviews, and commentaries. Its impact factor for 2022 is 8.8. The subject areas covered include the development of therapeutics based on nucleic acids and their derivatives, vector development for RNA-based therapeutics delivery, utilization of gene-modifying agents like Zn finger nucleases and triplex-forming oligonucleotides, pre-clinical target validation, safety and efficacy studies, and clinical trials.