Advanced nanofiber therapy: multifunctional silver-nanoparticles@polyacrylonitrile incorporating Syzygium guineense extracts for enhanced in vivo diabetic wound-healing and robust antimicrobial defense
Teshale Ayano Begeno, Yaqi Zhang, Abdurohman Mengesha Yessuf, Tibebu Shiferaw Kassa, Ahmed M. Salama, Weiguo Wang and Zhenxia Du
{"title":"Advanced nanofiber therapy: multifunctional silver-nanoparticles@polyacrylonitrile incorporating Syzygium guineense extracts for enhanced in vivo diabetic wound-healing and robust antimicrobial defense","authors":"Teshale Ayano Begeno, Yaqi Zhang, Abdurohman Mengesha Yessuf, Tibebu Shiferaw Kassa, Ahmed M. Salama, Weiguo Wang and Zhenxia Du","doi":"10.1039/D5NA00343A","DOIUrl":null,"url":null,"abstract":"<p >Green-synthesized silver nanoparticles (Bio-Ag NPs) derived from <em>Syzygium guineense</em> offer an eco-friendly, cost-effective platform with potent antibacterial activity and biocompatibility. These nanoparticles were integrated into electrospun polyacrylonitrile (PAN) nanofibers, creating Bio-Ag NPs@PAN nanocomposites for enhanced diabetic wound healing applications. The synthesized materials were systematically characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The antibacterial efficacy of Bio-Ag NPs was evaluated against Gram-positive <em>Staphylococcus aureus</em> and Gram-negative <em>Escherichia coli</em>, demonstrating inhibition zones of 17.0 ± 0.310 mm and 16.3 ± 0.290 mm, respectively. Additionally, the antioxidant potential of Bio-Ag NPs was confirmed using the DPPH assay, highlighting their physiological benefits. <em>In vivo</em> studies on a diabetic rat revealed the remarkable wound-healing efficiency of Bio-Ag NPs@PAN nanofibers. Over 3, 7, 11, and 14 days, these nanofibers significantly enhanced wound closure by promoting re-epithelialization, fibroblast proliferation, and extracellular matrix formation. Notably, Bio-Ag NPs(B)@PAN nanofibers accelerated diabetic wound healing by 52%, 68%, 88%, and 99% on days 3, 7, 11, and 14, respectively, with increased collagen deposition. This study demonstrates the multifunctional capabilities of Bio-Ag NPs@PAN nanofibers in addressing the challenges associated with diabetic wound healing, offering faster recovery and improved wound closure. Furthermore, the findings underscore the potent antioxidant and antibacterial properties of Bio-Ag NPs, emphasizing their potential for diverse biomedical applications.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" 19","pages":" 6158-6178"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12372215/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/na/d5na00343a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Green-synthesized silver nanoparticles (Bio-Ag NPs) derived from Syzygium guineense offer an eco-friendly, cost-effective platform with potent antibacterial activity and biocompatibility. These nanoparticles were integrated into electrospun polyacrylonitrile (PAN) nanofibers, creating Bio-Ag NPs@PAN nanocomposites for enhanced diabetic wound healing applications. The synthesized materials were systematically characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The antibacterial efficacy of Bio-Ag NPs was evaluated against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, demonstrating inhibition zones of 17.0 ± 0.310 mm and 16.3 ± 0.290 mm, respectively. Additionally, the antioxidant potential of Bio-Ag NPs was confirmed using the DPPH assay, highlighting their physiological benefits. In vivo studies on a diabetic rat revealed the remarkable wound-healing efficiency of Bio-Ag NPs@PAN nanofibers. Over 3, 7, 11, and 14 days, these nanofibers significantly enhanced wound closure by promoting re-epithelialization, fibroblast proliferation, and extracellular matrix formation. Notably, Bio-Ag NPs(B)@PAN nanofibers accelerated diabetic wound healing by 52%, 68%, 88%, and 99% on days 3, 7, 11, and 14, respectively, with increased collagen deposition. This study demonstrates the multifunctional capabilities of Bio-Ag NPs@PAN nanofibers in addressing the challenges associated with diabetic wound healing, offering faster recovery and improved wound closure. Furthermore, the findings underscore the potent antioxidant and antibacterial properties of Bio-Ag NPs, emphasizing their potential for diverse biomedical applications.