Targeting a pathogenic cryptic exon that drives HLRCC to induce exon skipping.

IF 6.1 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Molecular Therapy. Nucleic Acids Pub Date : 2025-08-05 eCollection Date: 2025-09-09 DOI:10.1016/j.omtn.2025.102668
Siddhardha S Maligireddy, Mariana D Mandler, Judith C Lunger, Madeline Yuen, Sneha Kulkarni, Alexendar R Perez, Christina M Fitzsimmons, Daniel R Crooks, Raj Chari, W Marston Linehan, Pedro J Batista
{"title":"Targeting a pathogenic cryptic exon that drives HLRCC to induce exon skipping.","authors":"Siddhardha S Maligireddy, Mariana D Mandler, Judith C Lunger, Madeline Yuen, Sneha Kulkarni, Alexendar R Perez, Christina M Fitzsimmons, Daniel R Crooks, Raj Chari, W Marston Linehan, Pedro J Batista","doi":"10.1016/j.omtn.2025.102668","DOIUrl":null,"url":null,"abstract":"<p><p>Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is an autosomal dominant cancer predisposition syndrome driven by the loss of fumarate hydratase (FH) activity. Recently, we identified a pathogenic variant in intron 9 of the <i>FH</i> gene that disrupts splicing by creating a novel splice acceptor site, resulting in the aberrant inclusion of a cryptic exon. Inclusion of the cryptic exon introduces a premature termination codon, leading to loss of FH activity. To restore FH expression, we sought to identify strategies to drive exclusion of the cryptic exon from the mature mRNA. To this end, we generated a minigene GFP reporter system that recapitulates the splicing defect observed in patients. We employed CRISPR-Cas9-mediated genome editing and antisense oligonucleotides (ASOs) to modulate splicing and demonstrated that both strategies can successfully promote skipping of the cryptic exon in a reporter cell line. Furthermore, we were able to show that ASOs can be used to shift the balance between the <i>FH</i> mRNA isoforms originated from the reference and the variant allele in patient-derived fibroblasts using ASOs. These findings support the potential for splicing modulation as a therapeutic approach for HLRCC-associated non-coding loss-of-function mutations in <i>FH</i>.</p>","PeriodicalId":18821,"journal":{"name":"Molecular Therapy. Nucleic Acids","volume":"36 3","pages":"102668"},"PeriodicalIF":6.1000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12396411/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy. Nucleic Acids","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtn.2025.102668","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/9 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is an autosomal dominant cancer predisposition syndrome driven by the loss of fumarate hydratase (FH) activity. Recently, we identified a pathogenic variant in intron 9 of the FH gene that disrupts splicing by creating a novel splice acceptor site, resulting in the aberrant inclusion of a cryptic exon. Inclusion of the cryptic exon introduces a premature termination codon, leading to loss of FH activity. To restore FH expression, we sought to identify strategies to drive exclusion of the cryptic exon from the mature mRNA. To this end, we generated a minigene GFP reporter system that recapitulates the splicing defect observed in patients. We employed CRISPR-Cas9-mediated genome editing and antisense oligonucleotides (ASOs) to modulate splicing and demonstrated that both strategies can successfully promote skipping of the cryptic exon in a reporter cell line. Furthermore, we were able to show that ASOs can be used to shift the balance between the FH mRNA isoforms originated from the reference and the variant allele in patient-derived fibroblasts using ASOs. These findings support the potential for splicing modulation as a therapeutic approach for HLRCC-associated non-coding loss-of-function mutations in FH.

靶向致病隐外显子,驱动HLRCC诱导外显子跳变。
遗传性平滑肌瘤病和肾细胞癌(HLRCC)是由富马酸水合酶(FH)活性丧失引起的常染色体显性癌症易感性综合征。最近,我们在FH基因的9号内含子中发现了一个致病变异,该变异通过创建一个新的剪接受体位点来破坏剪接,导致一个隐外显子的异常包含。隐外显子的包含引入了一个过早终止密码子,导致FH活性的丧失。为了恢复FH的表达,我们试图确定从成熟mRNA中剔除隐外显子的策略。为此,我们创建了一个迷你基因GFP报告系统,该系统概括了在患者中观察到的剪接缺陷。我们使用crispr - cas9介导的基因组编辑和反义寡核苷酸(ASOs)来调节剪接,并证明这两种策略都可以成功地促进报告细胞系中隐外显子的跳跃。此外,我们能够证明ASOs可以用来改变患者来源的成纤维细胞中源自参考基因和变异等位基因的FH mRNA同种型之间的平衡。这些发现支持了剪接调节作为治疗FH中hlrcc相关的非编码功能丧失突变的潜在方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Therapy. Nucleic Acids
Molecular Therapy. Nucleic Acids MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
15.40
自引率
1.10%
发文量
336
审稿时长
20 weeks
期刊介绍: Molecular Therapy Nucleic Acids is an international, open-access journal that publishes high-quality research in nucleic-acid-based therapeutics to treat and correct genetic and acquired diseases. It is the official journal of the American Society of Gene & Cell Therapy and is built upon the success of Molecular Therapy. The journal focuses on gene- and oligonucleotide-based therapies and publishes peer-reviewed research, reviews, and commentaries. Its impact factor for 2022 is 8.8. The subject areas covered include the development of therapeutics based on nucleic acids and their derivatives, vector development for RNA-based therapeutics delivery, utilization of gene-modifying agents like Zn finger nucleases and triplex-forming oligonucleotides, pre-clinical target validation, safety and efficacy studies, and clinical trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信