{"title":"Energy-band engineering and deep-ultraviolet photodetection of Ga<sub>2</sub>O<sub>3</sub>alloys: a concise review.","authors":"Zeng Liu, Zhaoying Xi, Linhai Gu, Sihan Yan, Rui Zhang, Xu Zhang, Hongbo Wang, Jia-Han Zhang, Weihua Tang","doi":"10.1088/1361-6528/ae0043","DOIUrl":null,"url":null,"abstract":"<p><p>Gallium oxide (Ga<sub>2</sub>O<sub>3</sub>)-based solar-blind ultraviolet photodetectors gained much attention for their promising prospects in new-generation solid-state optoelectronics and electronics. Catering for the demands of broadband photodetection, tunable energy-band, adjusted carrier concentration and effective carrier transition, alloying engineering through doping is gradually launched as one of the research emphases. This review is proposed to understand the photodetection performances in view of energy-band engineering. Especially for the representative (In<i><sub>x</sub></i>Ga<sub>1-<i>x</i></sub>)<sub>2</sub>O<sub>3</sub>and (Al<i><sub>y</sub></i>Ga<sub>1-<i>y</i></sub>)<sub>2</sub>O<sub>3</sub>alloys, the conduction band edges upshift as the empty Al 3 s and In 5 s states are introduced with higher energy, hybridize with Ga 4 s state. This leads to a result that low effective electron mass and high electron mobility could be achieved, contributing to high quality tunable performances of solar-blind UV photodetection. Thus, in this concise review article, the alloyed Ga<sub>2</sub>O<sub>3</sub>for photodetection would be reviewed and discussed based on the current developments, from the viewpoint of energy-band theory.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ae0043","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Gallium oxide (Ga2O3)-based solar-blind ultraviolet photodetectors gained much attention for their promising prospects in new-generation solid-state optoelectronics and electronics. Catering for the demands of broadband photodetection, tunable energy-band, adjusted carrier concentration and effective carrier transition, alloying engineering through doping is gradually launched as one of the research emphases. This review is proposed to understand the photodetection performances in view of energy-band engineering. Especially for the representative (InxGa1-x)2O3and (AlyGa1-y)2O3alloys, the conduction band edges upshift as the empty Al 3 s and In 5 s states are introduced with higher energy, hybridize with Ga 4 s state. This leads to a result that low effective electron mass and high electron mobility could be achieved, contributing to high quality tunable performances of solar-blind UV photodetection. Thus, in this concise review article, the alloyed Ga2O3for photodetection would be reviewed and discussed based on the current developments, from the viewpoint of energy-band theory.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.