Regulation of the Ald gene encoding alanine dehydrogenase and its induction of ammonium-tolerant nitrogen fixation in Paenibacillus polymyxa WLY78.

IF 4.9 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Haowei Zhang, Yuxing Han, Hui Tan, Qin Li, Sanfeng Chen
{"title":"Regulation of the Ald gene encoding alanine dehydrogenase and its induction of ammonium-tolerant nitrogen fixation in Paenibacillus polymyxa WLY78.","authors":"Haowei Zhang, Yuxing Han, Hui Tan, Qin Li, Sanfeng Chen","doi":"10.1186/s12934-025-02823-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Paenibacillus polymyxa WLY78, a Gram-positive diazotroph with plant growth promotion and phytopathogen suppression, represents a promising candidate for agricultural biofertilizers. However, its nitrogen fixation capacity is inherently limited by ammonium-mediated repression. Recent studies revealed that ammonium-tolerant nitrogen fixation in certain Paenibacillus species correlates with alanine overproduction mediated by alanine dehydrogenase (ADH) encoded by the ald gene.</p><p><strong>Results: </strong>This study establishes a dual regulatory mechanism governing ald expression in P. polymyxa WLY78. The transcription activator AdeR positively regulates ald expression, while the global nitrogen regulator GlnR exerts repression on both ald and its activator gene adeR. Under high ammonium conditions, GlnR-mediated suppression maintains basal ald expression levels, preventing alanine biosynthesis. Upregulation of ald expression through high-copy plasmid or mutagenesis of GlnR-binding sites in the adeR-ald regulatory region significantly enhanced alanine concentration. Both endogenous overproduction and exogenous supplementation of alanine suppressed glutamine synthetase (GS) activity, thereby reducing intracellular glutamine levels. This prevents the formation of glutamine-feedback-inhibited GS complexes (FBI-GS), disrupting the GlnR-FBI-GS interaction required for nif gene repression. Consequently, GlnR transitions to its activated state, enabling nif gene expression even under elevated ammonium concentrations.</p><p><strong>Conclusions: </strong>Our findings elucidate a conserved regulatory paradigm in Paenibacillus species where alanine metabolism modulates nitrogen fixation through GS-mediated metabolic signaling. The ald overexpression or exogenous alanine supplementation can bypass ammonium inhibition provides practical strategies for enhancing biofertilizer performance in nitrogen-rich agricultural soils.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"193"},"PeriodicalIF":4.9000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12369066/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-025-02823-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Paenibacillus polymyxa WLY78, a Gram-positive diazotroph with plant growth promotion and phytopathogen suppression, represents a promising candidate for agricultural biofertilizers. However, its nitrogen fixation capacity is inherently limited by ammonium-mediated repression. Recent studies revealed that ammonium-tolerant nitrogen fixation in certain Paenibacillus species correlates with alanine overproduction mediated by alanine dehydrogenase (ADH) encoded by the ald gene.

Results: This study establishes a dual regulatory mechanism governing ald expression in P. polymyxa WLY78. The transcription activator AdeR positively regulates ald expression, while the global nitrogen regulator GlnR exerts repression on both ald and its activator gene adeR. Under high ammonium conditions, GlnR-mediated suppression maintains basal ald expression levels, preventing alanine biosynthesis. Upregulation of ald expression through high-copy plasmid or mutagenesis of GlnR-binding sites in the adeR-ald regulatory region significantly enhanced alanine concentration. Both endogenous overproduction and exogenous supplementation of alanine suppressed glutamine synthetase (GS) activity, thereby reducing intracellular glutamine levels. This prevents the formation of glutamine-feedback-inhibited GS complexes (FBI-GS), disrupting the GlnR-FBI-GS interaction required for nif gene repression. Consequently, GlnR transitions to its activated state, enabling nif gene expression even under elevated ammonium concentrations.

Conclusions: Our findings elucidate a conserved regulatory paradigm in Paenibacillus species where alanine metabolism modulates nitrogen fixation through GS-mediated metabolic signaling. The ald overexpression or exogenous alanine supplementation can bypass ammonium inhibition provides practical strategies for enhancing biofertilizer performance in nitrogen-rich agricultural soils.

编码丙氨酸脱氢酶的Ald基因调控及其对多粘芽孢杆菌WLY78耐氨固氮的诱导作用。
背景:多粘类芽孢杆菌WLY78是一种革兰氏阳性重氮营养菌,具有促进植物生长和抑制植物病原体的作用,是一种很有前景的农业生物肥料。然而,其固氮能力受到氨介导抑制的固有限制。最近的研究表明,某些类芽孢杆菌耐氨固氮与ald基因编码的丙氨酸脱氢酶(ADH)介导的丙氨酸过量生产有关。结果:本研究建立了多粘菌WLY78中ald表达的双重调控机制。转录激活因子AdeR正调控ald的表达,而全局氮调节因子GlnR对ald及其激活基因AdeR均有抑制作用。在高铵条件下,glnr介导的抑制维持了ald的基础表达水平,阻止了丙氨酸的生物合成。通过高拷贝质粒或诱变adeR-ald调控区域glnr结合位点上调ald的表达可显著提高丙氨酸浓度。内源性过量生产和外源性补充丙氨酸均抑制谷氨酰胺合成酶(GS)活性,从而降低细胞内谷氨酰胺水平。这阻止了谷氨酰胺反馈抑制GS复合物(FBI-GS)的形成,破坏了nif基因抑制所需的GlnR-FBI-GS相互作用。因此,GlnR转变为激活状态,即使在高铵浓度下也能表达nif基因。结论:我们的研究结果阐明了一个保守的调控模式,即丙氨酸代谢通过gs介导的代谢信号调节固氮。ald过表达或外源丙氨酸补充可以绕过铵抑制,为提高富氮农业土壤的生物肥料性能提供了切实可行的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial Cell Factories
Microbial Cell Factories 工程技术-生物工程与应用微生物
CiteScore
9.30
自引率
4.70%
发文量
235
审稿时长
2.3 months
期刊介绍: Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology. The journal is divided into the following editorial sections: -Metabolic engineering -Synthetic biology -Whole-cell biocatalysis -Microbial regulations -Recombinant protein production/bioprocessing -Production of natural compounds -Systems biology of cell factories -Microbial production processes -Cell-free systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信