Serkan Bolat, Seyit Ali Büyüktuna, Serra İlayda Yerlitaş, Hayrettin Yavuz, Gözde Ertürk Zararsız, Meltem Kurt Yenihan, Merve Gülşah Lafçı, Ertuğrul Keskin, Yasemin Çakır Kıymaz, Gökmen Zararsız, Halef Okan Doğan
{"title":"Decoding blood fatty acids in Crimean-Congo hemorrhagic fever.","authors":"Serkan Bolat, Seyit Ali Büyüktuna, Serra İlayda Yerlitaş, Hayrettin Yavuz, Gözde Ertürk Zararsız, Meltem Kurt Yenihan, Merve Gülşah Lafçı, Ertuğrul Keskin, Yasemin Çakır Kıymaz, Gökmen Zararsız, Halef Okan Doğan","doi":"10.1007/s11306-025-02327-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Fatty acids (FAs) are essential for cellular structure, metabolism, and inflammatory regulation. This study investigated FA profiles in Crimean-Congo hemorrhagic fever (CCHF), a severe viral illness with high mortality rates, to explore their potential as disease progression and severity biomarkers.</p><p><strong>Methods: </strong>190 participants were included in the study, comprising 115 CCHF-positive patients, 30 CCHF-negative patients, and 45 healthy controls. FA concentrations were analyzed via gas chromatography‒mass spectrometry (GC-MS).</p><p><strong>Results: </strong>Statistically significant differences in specific FA levels were observed between the study groups. Compared with mild and moderate cases, severe cases showed distinctive FA profiles. Notably, higher omega-6/omega-3 ratios and linoleic acid to dihomo-γ-linolenic acid (LA/DGLA) ratios are associated with severe disease outcomes and poor prognosis and are correlated with inflammatory markers such as IL-6 and D-dimer. Pathway analysis was performed to identify disruptions in fatty acid biosynthesis and metabolism. Additionally, Cox regression analyses were conducted to determine key fatty acids associated with prognosis. Regression analyses identified several key fatty acids influencing prognosis, including myristic acid, phytanic acid, linoleic acid, gamma-linolenic acid, alpha-linolenic acid, oleic acid, behenic acid, cerotic acid, linoleic acid DGLA, omega-6 fatty acids, omega-9 fatty acids, and the omega-6/omega-3 ratio. Pathway analysis revealed that the disruptions in the most affected pathways were the biosynthesis of unsaturated fatty acids, α-linolenic acid metabolism, elongation, degradation, arachidonic acid metabolism, and fatty acid biosynthesis in CCHF pathogenesis.</p><p><strong>Conclusion: </strong>This study highlights significant alterations in fatty acid metabolism and laboratory markers in CCHF. These findings provide insights into the pathophysiology of this disease and may guide future research on targeted therapeutic strategies.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"21 5","pages":"127"},"PeriodicalIF":3.3000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11306-025-02327-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Fatty acids (FAs) are essential for cellular structure, metabolism, and inflammatory regulation. This study investigated FA profiles in Crimean-Congo hemorrhagic fever (CCHF), a severe viral illness with high mortality rates, to explore their potential as disease progression and severity biomarkers.
Methods: 190 participants were included in the study, comprising 115 CCHF-positive patients, 30 CCHF-negative patients, and 45 healthy controls. FA concentrations were analyzed via gas chromatography‒mass spectrometry (GC-MS).
Results: Statistically significant differences in specific FA levels were observed between the study groups. Compared with mild and moderate cases, severe cases showed distinctive FA profiles. Notably, higher omega-6/omega-3 ratios and linoleic acid to dihomo-γ-linolenic acid (LA/DGLA) ratios are associated with severe disease outcomes and poor prognosis and are correlated with inflammatory markers such as IL-6 and D-dimer. Pathway analysis was performed to identify disruptions in fatty acid biosynthesis and metabolism. Additionally, Cox regression analyses were conducted to determine key fatty acids associated with prognosis. Regression analyses identified several key fatty acids influencing prognosis, including myristic acid, phytanic acid, linoleic acid, gamma-linolenic acid, alpha-linolenic acid, oleic acid, behenic acid, cerotic acid, linoleic acid DGLA, omega-6 fatty acids, omega-9 fatty acids, and the omega-6/omega-3 ratio. Pathway analysis revealed that the disruptions in the most affected pathways were the biosynthesis of unsaturated fatty acids, α-linolenic acid metabolism, elongation, degradation, arachidonic acid metabolism, and fatty acid biosynthesis in CCHF pathogenesis.
Conclusion: This study highlights significant alterations in fatty acid metabolism and laboratory markers in CCHF. These findings provide insights into the pathophysiology of this disease and may guide future research on targeted therapeutic strategies.
期刊介绍:
Metabolomics publishes current research regarding the development of technology platforms for metabolomics. This includes, but is not limited to:
metabolomic applications within man, including pre-clinical and clinical
pharmacometabolomics for precision medicine
metabolic profiling and fingerprinting
metabolite target analysis
metabolomic applications within animals, plants and microbes
transcriptomics and proteomics in systems biology
Metabolomics is an indispensable platform for researchers using new post-genomics approaches, to discover networks and interactions between metabolites, pharmaceuticals, SNPs, proteins and more. Its articles go beyond the genome and metabolome, by including original clinical study material together with big data from new emerging technologies.