{"title":"Phylogenetically and metabolically diverse active carbon-fixing microbes reside in mangrove sediments.","authors":"Shasha Wang, Zhuoming Zhao, Ruolin Cheng, Liang Cui, Jun Wang, Maxim Rubin-Blum, Yao Zhang, Bolin Liu, Xing Chen, Federico Baltar, Xiaxing Cao, Xuezhe Wen, Karine Alain, Zhen Chen, Jing Liao, Lijing Jiang, Zongze Shao","doi":"10.1186/s40168-025-02177-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mangroves are hotspots of carbon sequestration in transitional zones between marine and terrestrial ecosystems. Microbially driven dark carbon fixation (DCF) is prominent in sediments, yet our understanding of the DCF process across this continuum remains limited. In this study, we explored DCF activities and associated chemoautotrophs along the sediment depth of different mangrove sites in Fujian Province, China, using radiocarbon labeling and molecular techniques.</p><p><strong>Results: </strong>Our results showed that the DCF rates ranged from 0.02 to 3.27 mmol C m<sup>-2</sup> day<sup>-1</sup> in all samples, showing a depth-dependent spatial variation. These rates of DCF were closely related to the environmental factors such as DIC, TS, AVS, NH<sub>4</sub><sup>+</sup>, NO<sub>3</sub><sup>-</sup>, and NO<sub>2</sub><sup>-</sup>. Metagenomic analysis revealed six carbon-fixing pathways, with the Calvin-Benson-Bassham (CBB) cycle and Wood-Ljungdahl (WL) pathway being predominant. Further analysis of MAGs revealed that Gammaproteobacteria, Desulfobacteria, and Campylobacteria were the most abundant carbon-fixing groups. Intriguingly, some new lineages were found to have carbon-fixing potential, including two candidatus taxa JAJVIF01 and BMS3Abin14. Metatranscriptomic analyses confirmed that these carbon-fixing microbes were active in situ and occupied different niches. In the surface layers, Gammaproteobacteria with the CBB cycle played an important role in DCF, mainly driven by sulfur and hydrogen oxidation with oxygen reduction; in the deeper layers, Campylobacteria with the reductive tricarboxylic acid (rTCA) cycle and Desulfobacteria with the WL pathway were active members for DCF, mainly through sulfur, hydrogen, and CO oxidation. While in the deepest layers of 18-20 cm, methane-producing archaea Methanosarcinia was the essential member driving DCF. In addition, most taxa containing the WL pathway displayed a mixotrophic lifestyle corresponding to flexible carbon acquisition strategies.</p><p><strong>Conclusions: </strong>Overall, this study provides new insights into the understanding of biological carbon fixation and its ecological functions in mangrove sediments. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"13 1","pages":"194"},"PeriodicalIF":12.7000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12400630/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40168-025-02177-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Mangroves are hotspots of carbon sequestration in transitional zones between marine and terrestrial ecosystems. Microbially driven dark carbon fixation (DCF) is prominent in sediments, yet our understanding of the DCF process across this continuum remains limited. In this study, we explored DCF activities and associated chemoautotrophs along the sediment depth of different mangrove sites in Fujian Province, China, using radiocarbon labeling and molecular techniques.
Results: Our results showed that the DCF rates ranged from 0.02 to 3.27 mmol C m-2 day-1 in all samples, showing a depth-dependent spatial variation. These rates of DCF were closely related to the environmental factors such as DIC, TS, AVS, NH4+, NO3-, and NO2-. Metagenomic analysis revealed six carbon-fixing pathways, with the Calvin-Benson-Bassham (CBB) cycle and Wood-Ljungdahl (WL) pathway being predominant. Further analysis of MAGs revealed that Gammaproteobacteria, Desulfobacteria, and Campylobacteria were the most abundant carbon-fixing groups. Intriguingly, some new lineages were found to have carbon-fixing potential, including two candidatus taxa JAJVIF01 and BMS3Abin14. Metatranscriptomic analyses confirmed that these carbon-fixing microbes were active in situ and occupied different niches. In the surface layers, Gammaproteobacteria with the CBB cycle played an important role in DCF, mainly driven by sulfur and hydrogen oxidation with oxygen reduction; in the deeper layers, Campylobacteria with the reductive tricarboxylic acid (rTCA) cycle and Desulfobacteria with the WL pathway were active members for DCF, mainly through sulfur, hydrogen, and CO oxidation. While in the deepest layers of 18-20 cm, methane-producing archaea Methanosarcinia was the essential member driving DCF. In addition, most taxa containing the WL pathway displayed a mixotrophic lifestyle corresponding to flexible carbon acquisition strategies.
Conclusions: Overall, this study provides new insights into the understanding of biological carbon fixation and its ecological functions in mangrove sediments. Video Abstract.
期刊介绍:
Microbiome is a journal that focuses on studies of microbiomes in humans, animals, plants, and the environment. It covers both natural and manipulated microbiomes, such as those in agriculture. The journal is interested in research that uses meta-omics approaches or novel bioinformatics tools and emphasizes the community/host interaction and structure-function relationship within the microbiome. Studies that go beyond descriptive omics surveys and include experimental or theoretical approaches will be considered for publication. The journal also encourages research that establishes cause and effect relationships and supports proposed microbiome functions. However, studies of individual microbial isolates/species without exploring their impact on the host or the complex microbiome structures and functions will not be considered for publication. Microbiome is indexed in BIOSIS, Current Contents, DOAJ, Embase, MEDLINE, PubMed, PubMed Central, and Science Citations Index Expanded.