Influence of Biophysical and -Chemical Cues of Crosslinked Gelatin Networks on Endothelial Cell Adhesion, Morphology, Proliferation, and Angiogenic Signaling.

IF 4.1 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Laurens Parmentier, Louis Van der Meeren, Andre G Skirtach, Sandra Van Vlierberghe
{"title":"Influence of Biophysical and -Chemical Cues of Crosslinked Gelatin Networks on Endothelial Cell Adhesion, Morphology, Proliferation, and Angiogenic Signaling.","authors":"Laurens Parmentier, Louis Van der Meeren, Andre G Skirtach, Sandra Van Vlierberghe","doi":"10.1002/mabi.202400579","DOIUrl":null,"url":null,"abstract":"<p><p>Pre-vascularization through endothelial cell seeding within 3D-bioprinted constructs holds great promise to advance tissue engineering vascularization strategies. Herein, the effect of biophysical (bulk modulus (0.50-76.09 kPa), local elasticity (3.65-53.68 kPa), roughness (421.07-858.30 nm)) and biochemical (0, 25 ng/mL VEGF-A or 3 mg/mL adenosine) cues in widely used bioinks (methacryloyl vs. thiol-norbornene modified gelatins incorporating 6.21-25.81 mM crosslinked moieties) was systematically investigated on the adhesion, morphology, proliferation and angiogenic signaling of seeded human umbilical vein endothelial cells. Chain-growth networks exhibited an enhanced roughness together with the need for a higher concentration of converted moieties to obtain a non-statistically significant local substrate elasticity compared to the step-growth substrates (5 w/v% GelNBSH DS 74/67 vs. 5 w/v% GelMA DS 67: 6.02 ± 2.94 vs. 3.85 ± 1.24 kPa with 6.21 vs. 7.33 mM crosslinked moieties). Despite bulk compressive moduli with insignificant difference (5 w/v% GelNBSH DS 74/67 vs. 5 w/v% GelMA DS 99: 13.57 ± 0.56 vs. 14.18 ± 1.59 kPa), the 5 w/v% GelNBSH DS 74/67 networks outperformed the 5 w/v% GelMA DS 99 samples, especially through enhanced early and more mature angiogenic signaling (Ang-2, HB-EGF, VEGF-C, FGF-1, IL-8, Endothelin-1) after 1 day of culture, while chain-growth networks required VEGF-A supplementation to attain similar signaling.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":" ","pages":"e00579"},"PeriodicalIF":4.1000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/mabi.202400579","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pre-vascularization through endothelial cell seeding within 3D-bioprinted constructs holds great promise to advance tissue engineering vascularization strategies. Herein, the effect of biophysical (bulk modulus (0.50-76.09 kPa), local elasticity (3.65-53.68 kPa), roughness (421.07-858.30 nm)) and biochemical (0, 25 ng/mL VEGF-A or 3 mg/mL adenosine) cues in widely used bioinks (methacryloyl vs. thiol-norbornene modified gelatins incorporating 6.21-25.81 mM crosslinked moieties) was systematically investigated on the adhesion, morphology, proliferation and angiogenic signaling of seeded human umbilical vein endothelial cells. Chain-growth networks exhibited an enhanced roughness together with the need for a higher concentration of converted moieties to obtain a non-statistically significant local substrate elasticity compared to the step-growth substrates (5 w/v% GelNBSH DS 74/67 vs. 5 w/v% GelMA DS 67: 6.02 ± 2.94 vs. 3.85 ± 1.24 kPa with 6.21 vs. 7.33 mM crosslinked moieties). Despite bulk compressive moduli with insignificant difference (5 w/v% GelNBSH DS 74/67 vs. 5 w/v% GelMA DS 99: 13.57 ± 0.56 vs. 14.18 ± 1.59 kPa), the 5 w/v% GelNBSH DS 74/67 networks outperformed the 5 w/v% GelMA DS 99 samples, especially through enhanced early and more mature angiogenic signaling (Ang-2, HB-EGF, VEGF-C, FGF-1, IL-8, Endothelin-1) after 1 day of culture, while chain-growth networks required VEGF-A supplementation to attain similar signaling.

交联明胶网络的生物物理和化学线索对内皮细胞粘附、形态、增殖和血管生成信号的影响。
通过3d生物打印构建中的内皮细胞播种进行预血管化,对推进组织工程血管化策略具有很大的希望。本文系统研究了生物物理(体积模量(0.50-76.09 kPa)、局部弹性(3.65-53.68 kPa)、粗糙度(421.07-858.30 nm)和生物化学(0,25 ng/mL VEGF-A或3 mg/mL腺苷)信号对人脐静脉内皮细胞的粘附、形态、增殖和血管生成信号的影响。与阶梯生长基质相比,链式生长网络表现出增强的粗糙度,同时需要更高浓度的转化基团才能获得非统计显著的局部底物弹性(5 w/v% GelNBSH DS 74/67 vs. 5 w/v% GelMA DS 67: 6.02±2.94 vs. 3.85±1.24 kPa, 6.21 vs. 7.33 mM交联基团)。尽管体积压缩模量差异不显著(5 w/v% GelNBSH DS 74/67 vs. 5 w/v% GelMA DS 99: 13.57±0.56 vs. 14.18±1.59 kPa),但5 w/v% GelNBSH DS 74/67网络在培养1天后优于5 w/v% GelMA DS 99样品,特别是通过增强早期和更成熟的血管生成信号(ang2, hbegf, VEGF-C, FGF-1, IL-8,内皮素-1),而链生长网络需要补充VEGF-A才能获得类似的信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular bioscience
Macromolecular bioscience 生物-材料科学:生物材料
CiteScore
7.90
自引率
2.20%
发文量
211
审稿时长
1.5 months
期刊介绍: Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals. Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers. With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信