{"title":"Clinical Radiomics Nomogram Based on Ultrasound: A Tool for Preoperative Prediction of Uterine Sarcoma.","authors":"Wuwu Zheng, Aihui Lu, Xiaoxiao Tang, Lixia Chen","doi":"10.1002/jum.70043","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study aims to develop a noninvasive preoperative predictive model utilizing ultrasound radiomics combined with clinical characteristics to differentiate uterine sarcoma from leiomyoma.</p><p><strong>Methods: </strong>This study included 212 patients with uterine mesenchymal lesions (102 sarcomas and 110 leiomyomas). Clinical characteristics were systematically selected through both univariate and multivariate logistic regression analyses. A clinical model was constructed using the selected clinical characteristics. Radiomics features were extracted from transvaginal ultrasound images, and 6 machine learning algorithms were used to construct radiomics models. Then, a clinical radiomics nomogram was developed integrating clinical characteristics with radiomics signature. The effectiveness of these models in predicting uterine sarcoma was thoroughly evaluated. The area under the curve (AUC) was used to compare the predictive efficacy of the different models.</p><p><strong>Results: </strong>The AUC of the clinical model was 0.835 (95% confidence interval [CI]: 0.761-0.883) and 0.791 (95% CI: 0.652-0.869) in the training and testing sets, respectively. The logistic regression model performed best in the radiomics model construction, with AUC values of 0.878 (95% CI: 0.811-0.918) and 0.818 (95% CI: 0.681-0.895) in the training and testing sets, respectively. The clinical radiomics nomogram performed well in differentiation, with AUC values of 0.955 (95% CI: 0.911-0.973) and 0.882 (95% CI: 0.767-0.936) in the training and testing sets, respectively.</p><p><strong>Conclusions: </strong>The clinical radiomics nomogram can provide more comprehensive and personalized diagnostic information, which is highly important for selecting treatment strategies and ultimately improving patient outcomes in the management of uterine mesenchymal tumors.</p>","PeriodicalId":17563,"journal":{"name":"Journal of Ultrasound in Medicine","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ultrasound in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jum.70043","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: This study aims to develop a noninvasive preoperative predictive model utilizing ultrasound radiomics combined with clinical characteristics to differentiate uterine sarcoma from leiomyoma.
Methods: This study included 212 patients with uterine mesenchymal lesions (102 sarcomas and 110 leiomyomas). Clinical characteristics were systematically selected through both univariate and multivariate logistic regression analyses. A clinical model was constructed using the selected clinical characteristics. Radiomics features were extracted from transvaginal ultrasound images, and 6 machine learning algorithms were used to construct radiomics models. Then, a clinical radiomics nomogram was developed integrating clinical characteristics with radiomics signature. The effectiveness of these models in predicting uterine sarcoma was thoroughly evaluated. The area under the curve (AUC) was used to compare the predictive efficacy of the different models.
Results: The AUC of the clinical model was 0.835 (95% confidence interval [CI]: 0.761-0.883) and 0.791 (95% CI: 0.652-0.869) in the training and testing sets, respectively. The logistic regression model performed best in the radiomics model construction, with AUC values of 0.878 (95% CI: 0.811-0.918) and 0.818 (95% CI: 0.681-0.895) in the training and testing sets, respectively. The clinical radiomics nomogram performed well in differentiation, with AUC values of 0.955 (95% CI: 0.911-0.973) and 0.882 (95% CI: 0.767-0.936) in the training and testing sets, respectively.
Conclusions: The clinical radiomics nomogram can provide more comprehensive and personalized diagnostic information, which is highly important for selecting treatment strategies and ultimately improving patient outcomes in the management of uterine mesenchymal tumors.
期刊介绍:
The Journal of Ultrasound in Medicine (JUM) is dedicated to the rapid, accurate publication of original articles dealing with all aspects of medical ultrasound, particularly its direct application to patient care but also relevant basic science, advances in instrumentation, and biological effects. The journal is an official publication of the American Institute of Ultrasound in Medicine and publishes articles in a variety of categories, including Original Research papers, Review Articles, Pictorial Essays, Technical Innovations, Case Series, Letters to the Editor, and more, from an international bevy of countries in a continual effort to showcase and promote advances in the ultrasound community.
Represented through these efforts are a wide variety of disciplines of ultrasound, including, but not limited to:
-Basic Science-
Breast Ultrasound-
Contrast-Enhanced Ultrasound-
Dermatology-
Echocardiography-
Elastography-
Emergency Medicine-
Fetal Echocardiography-
Gastrointestinal Ultrasound-
General and Abdominal Ultrasound-
Genitourinary Ultrasound-
Gynecologic Ultrasound-
Head and Neck Ultrasound-
High Frequency Clinical and Preclinical Imaging-
Interventional-Intraoperative Ultrasound-
Musculoskeletal Ultrasound-
Neurosonology-
Obstetric Ultrasound-
Ophthalmologic Ultrasound-
Pediatric Ultrasound-
Point-of-Care Ultrasound-
Public Policy-
Superficial Structures-
Therapeutic Ultrasound-
Ultrasound Education-
Ultrasound in Global Health-
Urologic Ultrasound-
Vascular Ultrasound