Outbreak dates of virus could be predicted by their protein sequence.

IF 7.5 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Peijun Zuo, Longlong Zuo, Zhihong Li, Xiaotong Zhou, Yanping Yu, Qinqing Wu, Yixiao Niu, Qiaocheng Chang, A Bakr M Rabie, Paul Lam, Liping Li
{"title":"Outbreak dates of virus could be predicted by their protein sequence.","authors":"Peijun Zuo, Longlong Zuo, Zhihong Li, Xiaotong Zhou, Yanping Yu, Qinqing Wu, Yixiao Niu, Qiaocheng Chang, A Bakr M Rabie, Paul Lam, Liping Li","doi":"10.1186/s12967-025-07051-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Since 1970, monkey-pox, the last outbreak of smallpox, coronavirus was outbreak in the world for more than 50 years. To find if the outbreak dates could be predicted by their one-dimension protein sequence, the mathematical model was needed to establish between them.</p><p><strong>Methods: </strong>(A) collecting the outbreak dates of monkey-pox, smallpox, and coronavirus, determine the outbreak time interval between the pathogen strain and the reference strain SARS-CoV-2 D614, z. (B) detecting the one-dimension antigenic amino acid sequence of the pathogen strain to determine the super-antigens. (C) calculating the super-antigen precision, determining the increase amount in antigen precision between the pathogen strain and the reference strain, x; y represents the number of tryptophan (W) in the super-antigen. (D) Determine the correlation among the outbreak time interval z, the increase amount in antigen precision, x, and the number of W the super-antigen contains, y.</p><p><strong>Results: </strong>The regression equation is z = 13.762x<sup>2 </sup>- 109.376x- 63.290y + 221.197, with a correlation coefficient of R = 1.0000000. After statistical testing, the probability of class I errors occurring is P = 0.008.</p><p><strong>Conclusions: </strong>The method can predict the outbreak dates by one-dimension protein sequence, such as monkey-pox, smallpox, and coronavirus.</p>","PeriodicalId":17458,"journal":{"name":"Journal of Translational Medicine","volume":"23 1","pages":"980"},"PeriodicalIF":7.5000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12403610/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12967-025-07051-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Since 1970, monkey-pox, the last outbreak of smallpox, coronavirus was outbreak in the world for more than 50 years. To find if the outbreak dates could be predicted by their one-dimension protein sequence, the mathematical model was needed to establish between them.

Methods: (A) collecting the outbreak dates of monkey-pox, smallpox, and coronavirus, determine the outbreak time interval between the pathogen strain and the reference strain SARS-CoV-2 D614, z. (B) detecting the one-dimension antigenic amino acid sequence of the pathogen strain to determine the super-antigens. (C) calculating the super-antigen precision, determining the increase amount in antigen precision between the pathogen strain and the reference strain, x; y represents the number of tryptophan (W) in the super-antigen. (D) Determine the correlation among the outbreak time interval z, the increase amount in antigen precision, x, and the number of W the super-antigen contains, y.

Results: The regression equation is z = 13.762x2 - 109.376x- 63.290y + 221.197, with a correlation coefficient of R = 1.0000000. After statistical testing, the probability of class I errors occurring is P = 0.008.

Conclusions: The method can predict the outbreak dates by one-dimension protein sequence, such as monkey-pox, smallpox, and coronavirus.

Abstract Image

Abstract Image

Abstract Image

病毒的蛋白质序列可以预测病毒的爆发日期。
自1970年猴痘,天花,冠状病毒的最后一次爆发以来,在世界上爆发了50多年。为了确定爆发日期是否可以通过它们的一维蛋白质序列来预测,需要在它们之间建立数学模型。方法:(A)收集猴痘、天花和冠状病毒的爆发日期,确定病原体菌株与参考菌株SARS-CoV-2 D614的爆发时间间隔;(B)检测病原体菌株的一维抗原氨基酸序列,确定超级抗原。(C)计算超抗原精度,确定病原体菌株与参比菌株之间抗原精度的增加量x;y表示超抗原中色氨酸(W)的数量。(D)确定爆发时间间隔z、抗原精密度增加量x与超抗原所含W数y的相关性。结果:回归方程为z = 13.762x2 - 109.376x- 63.290y + 221.197,相关系数R = 1.00000。经统计检验,第一类错误发生的概率P = 0.008。结论:该方法可根据猴痘、天花、冠状病毒等疾病的一维蛋白序列预测暴发日期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Translational Medicine
Journal of Translational Medicine 医学-医学:研究与实验
CiteScore
10.00
自引率
1.40%
发文量
537
审稿时长
1 months
期刊介绍: The Journal of Translational Medicine is an open-access journal that publishes articles focusing on information derived from human experimentation to enhance communication between basic and clinical science. It covers all areas of translational medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信