Wolfgang Hitzl, Markus Lenzhofer, Melchior Hohensinn, Herbert Anton Reitsamer
{"title":"Two Machine Learning Models to Economize Glaucoma Screening Programs: An Approach Based on Neural Nets.","authors":"Wolfgang Hitzl, Markus Lenzhofer, Melchior Hohensinn, Herbert Anton Reitsamer","doi":"10.3390/jpm15080361","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background</b>: In glaucoma screening programs, a large proportion of patients remain free of open-angle glaucoma (OAG) or have no need of intraocular eye pressure (IOP)-lowering therapy within 10 years of follow-up. Is it possible to identify a large proportion of patients already at the initial examination and, thus, to safely exclude them already at this point? <b>Methods</b>: A total of 6889 subjects received a complete ophthalmological examination, including objective optic nerve head and quantitative disc measurements at the initial examination, and after an average follow-up period of 11.1 years, complete data were available of 585 individuals. Two neural network models were trained and extensively tested. To allow the models to refuse to make a prediction in doubtful cases, a reject option was included. <b>Results</b>: A prediction for the first endpoint, 'remaining OAG-free and no IOP-lowering therapy within 10 years', was rejected in 57% of cases, and in the remaining cases (43%), 253/253 (=100%) received a correct prediction. The second prediction model for the second endpoint 'remaining OAG-free within 10 years' refused to make a prediction for 46.4% of all subjects. In the remaining cases (53.6%), 271/271 (=100%) were correctly predicted. <b>Conclusions</b>: Most importantly, no eye was predicted false-negatively or false-positively. Overall, 43% all eyes can safely be excluded from a glaucoma screening program for up to 10 years to be certain that the eye remains OAG-free and will not need IOP-lowering therapy. The corresponding model significantly reduces the screening performed by and work load of ophthalmologists. In the future, better predictors and models may increase the number of patients with a safe prediction, further economizing time and healthcare budgets in glaucoma screening.</p>","PeriodicalId":16722,"journal":{"name":"Journal of Personalized Medicine","volume":"15 8","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387565/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Personalized Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/jpm15080361","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: In glaucoma screening programs, a large proportion of patients remain free of open-angle glaucoma (OAG) or have no need of intraocular eye pressure (IOP)-lowering therapy within 10 years of follow-up. Is it possible to identify a large proportion of patients already at the initial examination and, thus, to safely exclude them already at this point? Methods: A total of 6889 subjects received a complete ophthalmological examination, including objective optic nerve head and quantitative disc measurements at the initial examination, and after an average follow-up period of 11.1 years, complete data were available of 585 individuals. Two neural network models were trained and extensively tested. To allow the models to refuse to make a prediction in doubtful cases, a reject option was included. Results: A prediction for the first endpoint, 'remaining OAG-free and no IOP-lowering therapy within 10 years', was rejected in 57% of cases, and in the remaining cases (43%), 253/253 (=100%) received a correct prediction. The second prediction model for the second endpoint 'remaining OAG-free within 10 years' refused to make a prediction for 46.4% of all subjects. In the remaining cases (53.6%), 271/271 (=100%) were correctly predicted. Conclusions: Most importantly, no eye was predicted false-negatively or false-positively. Overall, 43% all eyes can safely be excluded from a glaucoma screening program for up to 10 years to be certain that the eye remains OAG-free and will not need IOP-lowering therapy. The corresponding model significantly reduces the screening performed by and work load of ophthalmologists. In the future, better predictors and models may increase the number of patients with a safe prediction, further economizing time and healthcare budgets in glaucoma screening.
期刊介绍:
Journal of Personalized Medicine (JPM; ISSN 2075-4426) is an international, open access journal aimed at bringing all aspects of personalized medicine to one platform. JPM publishes cutting edge, innovative preclinical and translational scientific research and technologies related to personalized medicine (e.g., pharmacogenomics/proteomics, systems biology). JPM recognizes that personalized medicine—the assessment of genetic, environmental and host factors that cause variability of individuals—is a challenging, transdisciplinary topic that requires discussions from a range of experts. For a comprehensive perspective of personalized medicine, JPM aims to integrate expertise from the molecular and translational sciences, therapeutics and diagnostics, as well as discussions of regulatory, social, ethical and policy aspects. We provide a forum to bring together academic and clinical researchers, biotechnology, diagnostic and pharmaceutical companies, health professionals, regulatory and ethical experts, and government and regulatory authorities.