Jihyun Yang, Young Rae Lee, Young Youl Hyun, Hyun Jung Kim, Tae Young Shin, Kyu-Beck Lee
{"title":"Comparison Between the Human-Sourced Ellipsoid Method and Kidney Volumetry Using Artificial Intelligence in Polycystic Kidney Disease.","authors":"Jihyun Yang, Young Rae Lee, Young Youl Hyun, Hyun Jung Kim, Tae Young Shin, Kyu-Beck Lee","doi":"10.3390/jpm15080392","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> The Mayo imaging classification (MIC) for polycystic kidney disease (PKD) is a crucial basis for clinical treatment decisions; however, the volumetric assessment for its evaluation remains tedious and inaccurate. While the ellipsoid method for measuring the total kidney volume (TKV) in patients with PKD provides a practical TKV estimation using computed tomography (CT), its inconsistency and inaccuracy are limitations, highlighting the need for improved, accessible techniques in real-world clinics. <b>Methods:</b> We compared manual ellipsoid and artificial intelligence (AI)-based kidney volumetry methods using a convolutional neural network-based segmentation model (3D Dynamic U-Net) for measuring the TKV by assessing 32 patients with PKD in a single tertiary hospital. <b>Results:</b> The median age and average TKV were 56 years and 1200.24 mL, respectively. Most of the patients were allocated to Mayo Clinic classifications 1B and 1C using the ellipsoid method, similar to the AI volumetry classification. AI volumetry outperformed the ellipsoid method with highly correlated scores (AI vs. nephrology professor ICC: r = 0.991, 95% confidence interval (CI) = 0.9780-0.9948, <i>p</i> < 0.01; AI vs. trained clinician ICC: r = 0.983, 95% CI = 0.9608-0.9907, <i>p</i> < 0.01). The Bland-Altman plot also showed that the mean differences between professor and AI volumetry were statistically insignificant (mean difference 159.5 mL, 95% CI = 11.8368-330.7817, <i>p</i> = 0.07). <b>Conclusions:</b> AI-based kidney volumetry demonstrates strong agreement with expert manual measurements and offers a reliable, labor-efficient alternative for TKV assessment in clinical practice. It is helpful and essential for managing PKD and optimizing therapeutic outcomes.</p>","PeriodicalId":16722,"journal":{"name":"Journal of Personalized Medicine","volume":"15 8","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387165/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Personalized Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/jpm15080392","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The Mayo imaging classification (MIC) for polycystic kidney disease (PKD) is a crucial basis for clinical treatment decisions; however, the volumetric assessment for its evaluation remains tedious and inaccurate. While the ellipsoid method for measuring the total kidney volume (TKV) in patients with PKD provides a practical TKV estimation using computed tomography (CT), its inconsistency and inaccuracy are limitations, highlighting the need for improved, accessible techniques in real-world clinics. Methods: We compared manual ellipsoid and artificial intelligence (AI)-based kidney volumetry methods using a convolutional neural network-based segmentation model (3D Dynamic U-Net) for measuring the TKV by assessing 32 patients with PKD in a single tertiary hospital. Results: The median age and average TKV were 56 years and 1200.24 mL, respectively. Most of the patients were allocated to Mayo Clinic classifications 1B and 1C using the ellipsoid method, similar to the AI volumetry classification. AI volumetry outperformed the ellipsoid method with highly correlated scores (AI vs. nephrology professor ICC: r = 0.991, 95% confidence interval (CI) = 0.9780-0.9948, p < 0.01; AI vs. trained clinician ICC: r = 0.983, 95% CI = 0.9608-0.9907, p < 0.01). The Bland-Altman plot also showed that the mean differences between professor and AI volumetry were statistically insignificant (mean difference 159.5 mL, 95% CI = 11.8368-330.7817, p = 0.07). Conclusions: AI-based kidney volumetry demonstrates strong agreement with expert manual measurements and offers a reliable, labor-efficient alternative for TKV assessment in clinical practice. It is helpful and essential for managing PKD and optimizing therapeutic outcomes.
期刊介绍:
Journal of Personalized Medicine (JPM; ISSN 2075-4426) is an international, open access journal aimed at bringing all aspects of personalized medicine to one platform. JPM publishes cutting edge, innovative preclinical and translational scientific research and technologies related to personalized medicine (e.g., pharmacogenomics/proteomics, systems biology). JPM recognizes that personalized medicine—the assessment of genetic, environmental and host factors that cause variability of individuals—is a challenging, transdisciplinary topic that requires discussions from a range of experts. For a comprehensive perspective of personalized medicine, JPM aims to integrate expertise from the molecular and translational sciences, therapeutics and diagnostics, as well as discussions of regulatory, social, ethical and policy aspects. We provide a forum to bring together academic and clinical researchers, biotechnology, diagnostic and pharmaceutical companies, health professionals, regulatory and ethical experts, and government and regulatory authorities.