Deep Learning-Based Detection of Papilledema on Retinal Photographs From Handheld Cameras: A Prospective Study.

IF 2 4区 医学 Q3 CLINICAL NEUROLOGY
Ayse Gungor, Zhiqun Tang, Jing L Loo, Sharon T L Choon, Shweta Singhal, Reuben F C Ming, Louis Tadayoni, Ilias Sarbout, Nancy J Newman, Valérie Biousse, Raymond P Najjar, Dan Milea
{"title":"Deep Learning-Based Detection of Papilledema on Retinal Photographs From Handheld Cameras: A Prospective Study.","authors":"Ayse Gungor, Zhiqun Tang, Jing L Loo, Sharon T L Choon, Shweta Singhal, Reuben F C Ming, Louis Tadayoni, Ilias Sarbout, Nancy J Newman, Valérie Biousse, Raymond P Najjar, Dan Milea","doi":"10.1097/WNO.0000000000002394","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Papilledema and other optic neuropathies are critical findings in neuro-ophthalmology that require timely and accurate diagnosis. This study evaluates the performance of a deep learning system (DLS) to identify papilledema and other optic neuropathies, when applied to a large dataset of retinal photographs acquired prospectively with a handheld nonmydriatic camera in a neuro-ophthalmology department.</p><p><strong>Methods: </strong>International multiethnic, multicenter study including 20,533 retinal photographs (10,647 patients) from 31 centers worldwide. The training and internal validation datasets consisted of 18,981 mydriatic retinal photographs (9,830 patients) from 22 countries. The external testing dataset included 1,552 prospectively collected retinal photographs (817 patients) acquired with a handheld camera (Aurora, Optomed, Finland). The DLS segmented the optic disc and peripapillary region, then classified each photograph as 1/\"papilledema,\" 2/\"other\" optic disc abnormalities (i.e., swelling because of other causes, atrophy, etc.), or 3/\"normal.\" The performance of the DLS in classifying optic disc appearance was evaluated using area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and accuracy. Diagnostic outcomes were evaluated at the eye level and at the patient level.</p><p><strong>Results: </strong>The DLS achieved an accuracy of 99.5% (95% confidence interval [CI], 99.1-99.8), a sensitivity of 81.0% (95% CI, 64.1-97.7), a specificity of 99.7% (95% CI, 99.5-99.9), and an AUC of 98.3% (95% CI, 97.6-99.9) for differentiating papilledema from \"others\" and healthy controls.</p><p><strong>Conclusions: </strong>A DLS trained on a large dataset of mydriatic photographs achieved excellent diagnostic performance for detection of papilledema and other optic disc abnormalities when applied to nonmydriatic retinal photographs acquired with a handheld camera in real life conditions.</p>","PeriodicalId":16485,"journal":{"name":"Journal of Neuro-Ophthalmology","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuro-Ophthalmology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/WNO.0000000000002394","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Papilledema and other optic neuropathies are critical findings in neuro-ophthalmology that require timely and accurate diagnosis. This study evaluates the performance of a deep learning system (DLS) to identify papilledema and other optic neuropathies, when applied to a large dataset of retinal photographs acquired prospectively with a handheld nonmydriatic camera in a neuro-ophthalmology department.

Methods: International multiethnic, multicenter study including 20,533 retinal photographs (10,647 patients) from 31 centers worldwide. The training and internal validation datasets consisted of 18,981 mydriatic retinal photographs (9,830 patients) from 22 countries. The external testing dataset included 1,552 prospectively collected retinal photographs (817 patients) acquired with a handheld camera (Aurora, Optomed, Finland). The DLS segmented the optic disc and peripapillary region, then classified each photograph as 1/"papilledema," 2/"other" optic disc abnormalities (i.e., swelling because of other causes, atrophy, etc.), or 3/"normal." The performance of the DLS in classifying optic disc appearance was evaluated using area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and accuracy. Diagnostic outcomes were evaluated at the eye level and at the patient level.

Results: The DLS achieved an accuracy of 99.5% (95% confidence interval [CI], 99.1-99.8), a sensitivity of 81.0% (95% CI, 64.1-97.7), a specificity of 99.7% (95% CI, 99.5-99.9), and an AUC of 98.3% (95% CI, 97.6-99.9) for differentiating papilledema from "others" and healthy controls.

Conclusions: A DLS trained on a large dataset of mydriatic photographs achieved excellent diagnostic performance for detection of papilledema and other optic disc abnormalities when applied to nonmydriatic retinal photographs acquired with a handheld camera in real life conditions.

基于深度学习的手持式相机视网膜照片乳头水肿检测:一项前瞻性研究。
背景:视神经乳头水肿和其他视神经病变是神经眼科的重要发现,需要及时准确的诊断。本研究评估了深度学习系统(DLS)识别视神经乳头水肿和其他视神经病变的性能,并将其应用于神经眼科使用手持式无泪相机前瞻性获取的大量视网膜照片数据集。方法:国际多民族、多中心研究,包括来自全球31个中心的20,533张视网膜照片(10,647例患者)。训练和内部验证数据集包括来自22个国家的18,981张散瞳视网膜照片(9,830名患者)。外部测试数据集包括1552张前瞻性收集的视网膜照片(817名患者),这些照片是由手持相机(Aurora, Optomed, Finland)获得的。DLS将视盘和乳头周围区域分割,然后将每张照片分类为1/“乳头水肿”,2/“其他”视盘异常(即,由于其他原因引起的肿胀,萎缩等),或3/“正常”。采用受者工作特征曲线下面积(AUC)、灵敏度、特异性和准确性评价DLS对视盘外观的分类性能。诊断结果在眼水平和患者水平进行评估。结果:DLS鉴别乳头水肿与“其他”和健康对照的准确率为99.5%(95%置信区间[CI], 99.1-99.8),灵敏度为81.0% (95% CI, 64.1-97.7),特异性为99.7% (95% CI, 99.5-99.9), AUC为98.3% (95% CI, 96.6 -99.9)。结论:在大量散瞳照片数据集上训练的DLS在检测乳头水肿和其他视盘异常方面具有出色的诊断性能,当应用于在现实生活条件下使用手持相机获取的非散瞳视网膜照片时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Neuro-Ophthalmology
Journal of Neuro-Ophthalmology 医学-临床神经学
CiteScore
2.80
自引率
13.80%
发文量
593
审稿时长
6-12 weeks
期刊介绍: The Journal of Neuro-Ophthalmology (JNO) is the official journal of the North American Neuro-Ophthalmology Society (NANOS). It is a quarterly, peer-reviewed journal that publishes original and commissioned articles related to neuro-ophthalmology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信