{"title":"Strategic advances in liposomes technology: translational paradigm in transdermal delivery for skin dermatosis.","authors":"Anmol Choudhury, Apoorv Kirti, Sudakshya S Lenka, Shaikh Sheeran Naser, Adrija Sinha, Shalini Kumari, Nagendra Kumar Kaushik, Aishee Ghosh, Suresh K Verma","doi":"10.1186/s12951-025-03660-z","DOIUrl":null,"url":null,"abstract":"<p><p>Liposomes, spherical vesicles made of phospholipids and cholesterol, have captivated researchers for their encapsulation abilities, biocompatibility, and versatility. This review delves into the core aspects and benefits of liposomal technology for enhancing transdermal drug delivery in treating skin dermatosis. It offers an extensive overview of liposomes, emphasizing various preparation methods, classification, and encapsulation techniques. The encapsulation of therapeutic compounds by liposomes boosts their utility as a stable and efficient drug delivery vehicle. Transdermal delivery presents a non-invasive alternative to oral and parenteral routes, allowing for controlled and sustained release of drugs while bypassing hepatic first-pass metabolism and minimizing systemic side effects. However, the stratum corneum acts as a formidable barrier to drug permeation. Liposomes, owing to their lipid bilayer structure that mimics skin composition, enhance drug solubility and partitioning, facilitate deeper skin penetration, and improve therapeutic efficacy, making them ideal carriers for transdermal applications. Transdermal delivery, favoured for its active and passive approaches and advantages over topical delivery, has been extensively studied and employed for therapeutics. Liposomes as delivery vehicles have significantly improved drug delivery efficiency and stability in transdermal applications. This review comprehensively examines the utility and mechanistic applications of liposomes. It also addresses the limitations and challenges in liposomal formulation that must be overcome for successful clinical trials.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"576"},"PeriodicalIF":12.6000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12369165/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03660-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Liposomes, spherical vesicles made of phospholipids and cholesterol, have captivated researchers for their encapsulation abilities, biocompatibility, and versatility. This review delves into the core aspects and benefits of liposomal technology for enhancing transdermal drug delivery in treating skin dermatosis. It offers an extensive overview of liposomes, emphasizing various preparation methods, classification, and encapsulation techniques. The encapsulation of therapeutic compounds by liposomes boosts their utility as a stable and efficient drug delivery vehicle. Transdermal delivery presents a non-invasive alternative to oral and parenteral routes, allowing for controlled and sustained release of drugs while bypassing hepatic first-pass metabolism and minimizing systemic side effects. However, the stratum corneum acts as a formidable barrier to drug permeation. Liposomes, owing to their lipid bilayer structure that mimics skin composition, enhance drug solubility and partitioning, facilitate deeper skin penetration, and improve therapeutic efficacy, making them ideal carriers for transdermal applications. Transdermal delivery, favoured for its active and passive approaches and advantages over topical delivery, has been extensively studied and employed for therapeutics. Liposomes as delivery vehicles have significantly improved drug delivery efficiency and stability in transdermal applications. This review comprehensively examines the utility and mechanistic applications of liposomes. It also addresses the limitations and challenges in liposomal formulation that must be overcome for successful clinical trials.
期刊介绍:
Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.