Polymerase-based DNA reactions for molecularly computing cancerous diagnostic valences of multiple miRNAs.

IF 12.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yumin Yan, Hongyang Zhao, Lijie Xing, Ye Ouyang, Linghao Zhang, Jiayu Yang, Jing Qiu, Yongzhong Qian, Liang Ma, Rui Weng, Xin Su
{"title":"Polymerase-based DNA reactions for molecularly computing cancerous diagnostic valences of multiple miRNAs.","authors":"Yumin Yan, Hongyang Zhao, Lijie Xing, Ye Ouyang, Linghao Zhang, Jiayu Yang, Jing Qiu, Yongzhong Qian, Liang Ma, Rui Weng, Xin Su","doi":"10.1186/s12951-025-03643-0","DOIUrl":null,"url":null,"abstract":"<p><p>Conventional miRNA-based diagnostic methods often treat all biomarkers equally, overlooking the fact that each miRNA contributes differently to disease classification. This differential diagnostic importance is captured by the concept of Cancerous Diagnostic Valence (CDV)-a metric that quantifies both the direction (oncogenic or protective) and magnitude of each miRNA's association with cancer. Here, we introduce a polymerase-based DNA molecular computing system that directly encodes and integrates CDVs to perform weighted molecular classification of non-small cell lung cancer (NSCLC). By coupling DNA polymerase-mediated strand extension and displacement (PB-DSD and cascade PB-DSD), the system translates miRNA inputs into proportional molecular signals spanning a wide CDV range (1-25), with minimal probe complexity. Seven NSCLC-related miRNAs with machine learning-derived CDVs were used to construct a diagnostic classifier, achieving 95% accuracy in tissue and 90% in plasma samples. Compared to conventional toehold strand displacement systems, this approach offers broader scalability, lower background interference, and more accurate diagnostic logic. Furthermore, we demonstrate its utility for therapeutic monitoring by tracking drug-induced shifts in CDV-weighted miRNA profiles in tumor-bearing mice treated with allicin and curcumin. This work establishes a molecularly programmable and biologically informed diagnostic platform that advances the precision and interpretability of miRNA-based cancer diagnostics.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"598"},"PeriodicalIF":12.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12400545/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03643-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional miRNA-based diagnostic methods often treat all biomarkers equally, overlooking the fact that each miRNA contributes differently to disease classification. This differential diagnostic importance is captured by the concept of Cancerous Diagnostic Valence (CDV)-a metric that quantifies both the direction (oncogenic or protective) and magnitude of each miRNA's association with cancer. Here, we introduce a polymerase-based DNA molecular computing system that directly encodes and integrates CDVs to perform weighted molecular classification of non-small cell lung cancer (NSCLC). By coupling DNA polymerase-mediated strand extension and displacement (PB-DSD and cascade PB-DSD), the system translates miRNA inputs into proportional molecular signals spanning a wide CDV range (1-25), with minimal probe complexity. Seven NSCLC-related miRNAs with machine learning-derived CDVs were used to construct a diagnostic classifier, achieving 95% accuracy in tissue and 90% in plasma samples. Compared to conventional toehold strand displacement systems, this approach offers broader scalability, lower background interference, and more accurate diagnostic logic. Furthermore, we demonstrate its utility for therapeutic monitoring by tracking drug-induced shifts in CDV-weighted miRNA profiles in tumor-bearing mice treated with allicin and curcumin. This work establishes a molecularly programmable and biologically informed diagnostic platform that advances the precision and interpretability of miRNA-based cancer diagnostics.

基于聚合酶的DNA反应用于分子计算多种mirna的癌症诊断价。
传统的基于miRNA的诊断方法通常平等对待所有生物标志物,忽略了每个miRNA对疾病分类的不同贡献。这种鉴别诊断的重要性被癌症诊断价(CDV)的概念所捕捉,CDV是一种量化每个miRNA与癌症相关的方向(致癌或保护性)和程度的指标。在这里,我们介绍了一个基于聚合酶的DNA分子计算系统,该系统直接编码和整合cdv来执行非小细胞肺癌(NSCLC)的加权分子分类。通过耦合DNA聚合酶介导的链延伸和位移(PB-DSD和级联PB-DSD),该系统以最小的探针复杂性将miRNA输入转化为跨越宽CDV范围(1-25)的比例分子信号。七个nsclc相关的mirna与机器学习衍生的cdv被用来构建诊断分类器,在组织中达到95%的准确率,在血浆样本中达到90%。与传统的支点链位移系统相比,该方法具有更广泛的可扩展性、更低的背景干扰和更准确的诊断逻辑。此外,我们通过跟踪大蒜素和姜黄素治疗的荷瘤小鼠中cdv加权miRNA谱的药物诱导变化,证明了其在治疗监测中的效用。这项工作建立了一个分子可编程和生物学知情的诊断平台,提高了基于mirna的癌症诊断的准确性和可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信