Detection of Microscopic Glioblastoma Infiltration in Peritumoral Edema Using Interactive Deep Learning With DTI Biomarkers: Testing via Stereotactic Biopsy.
IF 3.5 2区 医学Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Jiaqi Tu, Chuyun Shen, Jianpeng Liu, Bin Hu, Zecheng Chen, Yijiu Yan, Chao Li, Ji Xiong, Alex Michel Daoud, Xiangfeng Wang, Yuxin Li, Fengping Zhu
{"title":"Detection of Microscopic Glioblastoma Infiltration in Peritumoral Edema Using Interactive Deep Learning With DTI Biomarkers: Testing via Stereotactic Biopsy.","authors":"Jiaqi Tu, Chuyun Shen, Jianpeng Liu, Bin Hu, Zecheng Chen, Yijiu Yan, Chao Li, Ji Xiong, Alex Michel Daoud, Xiangfeng Wang, Yuxin Li, Fengping Zhu","doi":"10.1002/jmri.70058","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Microscopic tumor cell infiltration beyond contrast-enhancing regions influences glioblastoma prognosis but remains undetectable using conventional MRI.</p><p><strong>Purpose: </strong>To develop and evaluate the glioblastoma infiltrating area interactive detection framework (GIAIDF), an interactive deep-learning framework that integrates diffusion tensor imaging (DTI) biomarkers for identifying microscopic infiltration within peritumoral edema.</p><p><strong>Study type: </strong>Retrospective.</p><p><strong>Population: </strong>A total of 73 training patients (51.13 ± 13.87 years; 47 M/26F) and 25 internal validation patients (52.82 ± 10.76 years; 14 M/11F) from Center 1; 25 external validation patients (47.29 ± 11.39 years; 16 M/9F) from Center 2; 13 prospective biopsy patients (45.62 ± 9.28 years; 8 M/5F) from Center 1.</p><p><strong>Field strength/sequences: </strong>3.0 T MRI including three-dimensional contrast-enhanced T1-weighted BRAVO sequence (repetition time = 7.8 ms, echo time = 3.0 ms, inversion time = 450 ms, slice thickness = 1 mm), three-dimensional T2-weighted fluid-attenuated inversion recovery (repetition time = 7000 ms, echo time = 120 ms, inversion time = 2000 ms, slice thickness = 1 mm), and diffusion tensor imaging (repetition time = 8500 ms, echo time = 63 ms, slice thickness = 2 mm).</p><p><strong>Assessment: </strong>Histopathology of 25 stereotactic biopsy specimens served as the reference standard. Primary metrics included AUC, accuracy, sensitivity, and specificity. GIAIDF heatmaps were co-registered to biopsy trajectories using Ratio-FAcpcic (0.16-0.22) as interactive priors.</p><p><strong>Statistical tests: </strong>ROC analysis (DeLong's method) for AUC; recall, precision, and F1 score for prediction validation.</p><p><strong>Results: </strong>GIAIDF demonstrated recall = 0.800 ± 0.060, precision = 0.915 ± 0.057, F1 = 0.852 ± 0.044 in internal validation (n = 25) and recall = 0.778 ± 0.053, precision = 0.890 ± 0.051, F1 = 0.829 ± 0.040 in external validation (n = 25). Among 13 patients undergoing stereotactic biopsy, 25 peri-ED specimens were analyzed: 18 without tumor cell infiltration and seven with infiltration, achieving AUC = 0.929 (95% CI: 0.804-1.000), sensitivity = 0.714, specificity = 0.944, and accuracy = 0.880. Infiltrated sites showed significantly higher risk scores (0.549 ± 0.194 vs. 0.205 ± 0.175 in non-infiltrated sites, p < 0.001).</p><p><strong>Data conclusion: </strong>This study has provided a potential tool, GIAIDF, to identify regions of GBM infiltration within areas of peri-ED based on preoperative MR images.</p>","PeriodicalId":16140,"journal":{"name":"Journal of Magnetic Resonance Imaging","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetic Resonance Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jmri.70058","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Microscopic tumor cell infiltration beyond contrast-enhancing regions influences glioblastoma prognosis but remains undetectable using conventional MRI.
Purpose: To develop and evaluate the glioblastoma infiltrating area interactive detection framework (GIAIDF), an interactive deep-learning framework that integrates diffusion tensor imaging (DTI) biomarkers for identifying microscopic infiltration within peritumoral edema.
Study type: Retrospective.
Population: A total of 73 training patients (51.13 ± 13.87 years; 47 M/26F) and 25 internal validation patients (52.82 ± 10.76 years; 14 M/11F) from Center 1; 25 external validation patients (47.29 ± 11.39 years; 16 M/9F) from Center 2; 13 prospective biopsy patients (45.62 ± 9.28 years; 8 M/5F) from Center 1.
Field strength/sequences: 3.0 T MRI including three-dimensional contrast-enhanced T1-weighted BRAVO sequence (repetition time = 7.8 ms, echo time = 3.0 ms, inversion time = 450 ms, slice thickness = 1 mm), three-dimensional T2-weighted fluid-attenuated inversion recovery (repetition time = 7000 ms, echo time = 120 ms, inversion time = 2000 ms, slice thickness = 1 mm), and diffusion tensor imaging (repetition time = 8500 ms, echo time = 63 ms, slice thickness = 2 mm).
Assessment: Histopathology of 25 stereotactic biopsy specimens served as the reference standard. Primary metrics included AUC, accuracy, sensitivity, and specificity. GIAIDF heatmaps were co-registered to biopsy trajectories using Ratio-FAcpcic (0.16-0.22) as interactive priors.
Statistical tests: ROC analysis (DeLong's method) for AUC; recall, precision, and F1 score for prediction validation.
Results: GIAIDF demonstrated recall = 0.800 ± 0.060, precision = 0.915 ± 0.057, F1 = 0.852 ± 0.044 in internal validation (n = 25) and recall = 0.778 ± 0.053, precision = 0.890 ± 0.051, F1 = 0.829 ± 0.040 in external validation (n = 25). Among 13 patients undergoing stereotactic biopsy, 25 peri-ED specimens were analyzed: 18 without tumor cell infiltration and seven with infiltration, achieving AUC = 0.929 (95% CI: 0.804-1.000), sensitivity = 0.714, specificity = 0.944, and accuracy = 0.880. Infiltrated sites showed significantly higher risk scores (0.549 ± 0.194 vs. 0.205 ± 0.175 in non-infiltrated sites, p < 0.001).
Data conclusion: This study has provided a potential tool, GIAIDF, to identify regions of GBM infiltration within areas of peri-ED based on preoperative MR images.
期刊介绍:
The Journal of Magnetic Resonance Imaging (JMRI) is an international journal devoted to the timely publication of basic and clinical research, educational and review articles, and other information related to the diagnostic applications of magnetic resonance.