Janaki M Nair, Analabha Basu, Nikhil Tandon, Dwaipayan Bharadwaj
{"title":"Early lipid genetics: identification of common and rare genetic variants for lipid traits in Indian adolescents.","authors":"Janaki M Nair, Analabha Basu, Nikhil Tandon, Dwaipayan Bharadwaj","doi":"10.1038/s10038-025-01388-0","DOIUrl":null,"url":null,"abstract":"<p><p>Elucidating the genetic basis of lipid metabolism in children is essential for early intervention in dyslipidemia and cardiovascular diseases. We performed a two-staged genome-wide association study (GWAS; N = 5412) and an independent exome-wide association study (ExWAS; N = 4750) on lipid parameters-HDL, LDL, Triglycerides (TG), Total Cholesterol (TC) in Indian school-going children - the largest single-cohort paediatric lipid study till date. GWAS identified robust associations at established loci, including CETP for HDL; CELSR2, and PSRC1 for LDL and TC, and GCKR, ZNF259, and TBL2 for TG. We also validated known associations at sub-GWAS significance in FADS2, GATAD2A, PRKCA, and QKI. Exome-based analyses further refined functional variants within these loci and revealed additional known loci in ALDH1A2 for HDL; APOE, APOC1, TM6SF2, CILP2, TOMM40, for LDL and TC; and APOA5, BUD13 for TG and novel loci in ATP8B3, MYH7B, GYS2, and RNF8 for TG. Conditional analysis revealed multiple independent signals at key loci. Gene-based GWAS pinpointed CETP and APOC1 as significant for HDL and LDL, respectively. Rare variant analysis identified significant contribution of loss-of-function missense variants in CETP, TM6SF2, and APOE, in regulating lipid profiles. Associations replicated with consistent directionality in European datasets and Indian adults, reinforcing conserved biology across ancestries and age groups. Functional enrichment analyses emphasized lipid-related pathways and differential expression in liver. These findings lay the foundation for ancestry-informed genetic risk prediction models to identify children at early risk for cardiovascular diseases.</p>","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s10038-025-01388-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Elucidating the genetic basis of lipid metabolism in children is essential for early intervention in dyslipidemia and cardiovascular diseases. We performed a two-staged genome-wide association study (GWAS; N = 5412) and an independent exome-wide association study (ExWAS; N = 4750) on lipid parameters-HDL, LDL, Triglycerides (TG), Total Cholesterol (TC) in Indian school-going children - the largest single-cohort paediatric lipid study till date. GWAS identified robust associations at established loci, including CETP for HDL; CELSR2, and PSRC1 for LDL and TC, and GCKR, ZNF259, and TBL2 for TG. We also validated known associations at sub-GWAS significance in FADS2, GATAD2A, PRKCA, and QKI. Exome-based analyses further refined functional variants within these loci and revealed additional known loci in ALDH1A2 for HDL; APOE, APOC1, TM6SF2, CILP2, TOMM40, for LDL and TC; and APOA5, BUD13 for TG and novel loci in ATP8B3, MYH7B, GYS2, and RNF8 for TG. Conditional analysis revealed multiple independent signals at key loci. Gene-based GWAS pinpointed CETP and APOC1 as significant for HDL and LDL, respectively. Rare variant analysis identified significant contribution of loss-of-function missense variants in CETP, TM6SF2, and APOE, in regulating lipid profiles. Associations replicated with consistent directionality in European datasets and Indian adults, reinforcing conserved biology across ancestries and age groups. Functional enrichment analyses emphasized lipid-related pathways and differential expression in liver. These findings lay the foundation for ancestry-informed genetic risk prediction models to identify children at early risk for cardiovascular diseases.
期刊介绍:
The Journal of Human Genetics is an international journal publishing articles on human genetics, including medical genetics and human genome analysis. It covers all aspects of human genetics, including molecular genetics, clinical genetics, behavioral genetics, immunogenetics, pharmacogenomics, population genetics, functional genomics, epigenetics, genetic counseling and gene therapy.
Articles on the following areas are especially welcome: genetic factors of monogenic and complex disorders, genome-wide association studies, genetic epidemiology, cancer genetics, personal genomics, genotype-phenotype relationships and genome diversity.