Towards an interpretable machine learning model for predicting antimicrobial resistance

IF 3.2 3区 医学 Q2 INFECTIOUS DISEASES
Mohamed Mediouni, Vladimir Makarenkov, Abdoulaye Baniré Diallo
{"title":"Towards an interpretable machine learning model for predicting antimicrobial resistance","authors":"Mohamed Mediouni,&nbsp;Vladimir Makarenkov,&nbsp;Abdoulaye Baniré Diallo","doi":"10.1016/j.jgar.2025.08.011","DOIUrl":null,"url":null,"abstract":"<div><div>This article explores the main stages of developing an interpretable machine learning (ML) model for predicting antimicrobial resistance (AMR), highlighting the importance of model interpretability in enhancing the prediction performance. By integrating phenotype-genotype synergy, our goal is to better understand AMR mechanisms. Such an approach combines ML with biological insights, offering a pathway towards more reliable AMR predictions and advancing the discovery of effective treatments against resistant pathogens. The challenges and opportunities related to incorporating this synergy into an ML model are discussed.</div></div>","PeriodicalId":15936,"journal":{"name":"Journal of global antimicrobial resistance","volume":"45 ","pages":"Pages 47-51"},"PeriodicalIF":3.2000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of global antimicrobial resistance","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221371652500195X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

This article explores the main stages of developing an interpretable machine learning (ML) model for predicting antimicrobial resistance (AMR), highlighting the importance of model interpretability in enhancing the prediction performance. By integrating phenotype-genotype synergy, our goal is to better understand AMR mechanisms. Such an approach combines ML with biological insights, offering a pathway towards more reliable AMR predictions and advancing the discovery of effective treatments against resistant pathogens. The challenges and opportunities related to incorporating this synergy into an ML model are discussed.
迈向预测抗菌素耐药性的可解释机器学习模型。
本文探讨了开发用于预测抗菌素耐药性(AMR)的可解释机器学习(ML)模型的主要阶段,强调了模型可解释性在提高预测性能方面的重要性。通过整合表型-基因型协同作用,我们的目标是更好地了解抗菌素耐药性机制。这种方法将机器学习与生物学见解相结合,为更可靠的AMR预测提供了一条途径,并推动了对耐药病原体的有效治疗的发现。讨论了将这种协同作用纳入ML模型的挑战和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of global antimicrobial resistance
Journal of global antimicrobial resistance INFECTIOUS DISEASES-PHARMACOLOGY & PHARMACY
CiteScore
8.70
自引率
2.20%
发文量
285
审稿时长
34 weeks
期刊介绍: The Journal of Global Antimicrobial Resistance (JGAR) is a quarterly online journal run by an international Editorial Board that focuses on the global spread of antibiotic-resistant microbes. JGAR is a dedicated journal for all professionals working in research, health care, the environment and animal infection control, aiming to track the resistance threat worldwide and provides a single voice devoted to antimicrobial resistance (AMR). Featuring peer-reviewed and up to date research articles, reviews, short notes and hot topics JGAR covers the key topics related to antibacterial, antiviral, antifungal and antiparasitic resistance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信