{"title":"Analysis of the Effects of <i>Beauveria bassiana</i> Appressorium Formation on Insect Cuticle Metabolism Based on LC-MS.","authors":"Jiarui Chen, Wenzhe Li, Canxia Wu, Songqing Wu, Yinghua Tong","doi":"10.3390/jof11080595","DOIUrl":null,"url":null,"abstract":"<p><p>The appressorium is a specialised infection structure formed by <i>Beauveria bassiana</i> during host invasion. This study used sulforaphane to regulate the formation rate of <i>B. bassiana appressoria</i>, evaluated the correlation between appressorium formation and fungal pathogenicity, and explored its impact on insect cuticular metabolism. The results showed that sulforaphane significantly modulated appressorium formation. Spore suspensions with varying appressorium formation rates were injected into <i>Opisina arenosella</i> and <i>Bombyx mori</i> larvae. As the appressorium formation rate increased, <i>B. bassiana</i> exhibited enhanced pathogenicity, leading to accelerated larval mortality. A significant positive correlation (<i>p</i> ≤ 0.05) was observed between appressorium formation and pathogenicity. LC-MS analysis revealed that, prior to appressorium development, larvae activated defence mechanisms involving secondary metabolites, hormone signalling, and toxin metabolism pathways. Following appressorium formation, 61 unique cuticular compounds were identified, along with activation of host lipid metabolism (notably glycerophospholipid degradation), programmed cell death pathways (ferroptosis, necroptosis), and enhanced energy metabolism via the citric acid cycle-collectively indicating disruption of the epidermal defence barrier. Overall, appressorium development by <i>B. bassiana</i> significantly reshapes the metabolic landscape of the larval cuticle, thereby enhancing fungal virulence. This study provides a theoretical foundation for understanding the pathogenic mechanisms of <i>B. bassiana</i>.</p>","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":"11 8","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387848/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fungi","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/jof11080595","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The appressorium is a specialised infection structure formed by Beauveria bassiana during host invasion. This study used sulforaphane to regulate the formation rate of B. bassiana appressoria, evaluated the correlation between appressorium formation and fungal pathogenicity, and explored its impact on insect cuticular metabolism. The results showed that sulforaphane significantly modulated appressorium formation. Spore suspensions with varying appressorium formation rates were injected into Opisina arenosella and Bombyx mori larvae. As the appressorium formation rate increased, B. bassiana exhibited enhanced pathogenicity, leading to accelerated larval mortality. A significant positive correlation (p ≤ 0.05) was observed between appressorium formation and pathogenicity. LC-MS analysis revealed that, prior to appressorium development, larvae activated defence mechanisms involving secondary metabolites, hormone signalling, and toxin metabolism pathways. Following appressorium formation, 61 unique cuticular compounds were identified, along with activation of host lipid metabolism (notably glycerophospholipid degradation), programmed cell death pathways (ferroptosis, necroptosis), and enhanced energy metabolism via the citric acid cycle-collectively indicating disruption of the epidermal defence barrier. Overall, appressorium development by B. bassiana significantly reshapes the metabolic landscape of the larval cuticle, thereby enhancing fungal virulence. This study provides a theoretical foundation for understanding the pathogenic mechanisms of B. bassiana.
期刊介绍:
Journal of Fungi (ISSN 2309-608X) is an international, peer-reviewed scientific open access journal that provides an advanced forum for studies related to pathogenic fungi, fungal biology, and all other aspects of fungal research. The journal publishes reviews, regular research papers, and communications in quarterly issues. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on paper length. Full experimental details must be provided so that the results can be reproduced.