Amira Mira, Fatma M Abdel Bar, Ahmed I Foudah, Mohamed H Aboutaleb, Tarek S Ibrahim, Ahmed H E Hassan, Ashraf T Khalil
{"title":"Bio-guided discovery of antibacterial metabolites from <i>Penicillium chrysogenum</i>.","authors":"Amira Mira, Fatma M Abdel Bar, Ahmed I Foudah, Mohamed H Aboutaleb, Tarek S Ibrahim, Ahmed H E Hassan, Ashraf T Khalil","doi":"10.1080/14756366.2025.2547258","DOIUrl":null,"url":null,"abstract":"<p><p>Bio-guided isolation from the Red Sea-derived <i>Penicillium chrysogenum</i> yielded two new metabolites, 15-deoxy-15-amino-citreohybridonol (<b>6</b>) and chrysogenotoxin (<b>7</b>), alongside five known compounds: emodin (<b>1</b>), chrysophanol (<b>2</b>), <i>bis</i>(2-ethylhexyl) phthalate (<b>3</b>), haenamindole (<b>4</b>), and citreorosein (<b>5</b>). Compound <b>6</b> exhibited broad-spectrum antibacterial activity against both Gram-positive (MIC: 0.31-0.62 μM; MBC: 0.31-0.62 μM) and Gram-negative bacteria (MIC: 0.15-1.25 μM; MBC: 0.62-2.5 μM). Compound <b>7</b> showed potent bactericidal activity against Gram-negative bacteria (MIC: 0.07-0.31 μM; MBC: 0.15-0.62 μM) with MBC/MIC ≤ 4, while compound <b>4</b> selectively inhibited <i>S. pneumoniae</i> (MIC: 0.31 μM; MBC: 0.62 μM). Compounds <b>4</b>, <b>6</b>, and <b>7</b> exhibited low cytotoxicity towards human intestinal epithelial cells (HIEC-6). Molecular docking studies targeting the NDM-1 β-lactamase identified compounds <b>4</b>, <b>6</b>, and <b>7</b> as potential inhibitors of New Delhi metallo-β-lactamase-1 (NDM-1). Molecular dynamics simulations confirmed the structural stability of <b>7</b> within the NDM-1 active site. Chrysogenotoxin (<b>7</b>) was suggested as a promising antibacterial candidate against antibiotic-resistant pathogens.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"40 1","pages":"2547258"},"PeriodicalIF":5.4000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12381984/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Enzyme Inhibition and Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14756366.2025.2547258","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bio-guided isolation from the Red Sea-derived Penicillium chrysogenum yielded two new metabolites, 15-deoxy-15-amino-citreohybridonol (6) and chrysogenotoxin (7), alongside five known compounds: emodin (1), chrysophanol (2), bis(2-ethylhexyl) phthalate (3), haenamindole (4), and citreorosein (5). Compound 6 exhibited broad-spectrum antibacterial activity against both Gram-positive (MIC: 0.31-0.62 μM; MBC: 0.31-0.62 μM) and Gram-negative bacteria (MIC: 0.15-1.25 μM; MBC: 0.62-2.5 μM). Compound 7 showed potent bactericidal activity against Gram-negative bacteria (MIC: 0.07-0.31 μM; MBC: 0.15-0.62 μM) with MBC/MIC ≤ 4, while compound 4 selectively inhibited S. pneumoniae (MIC: 0.31 μM; MBC: 0.62 μM). Compounds 4, 6, and 7 exhibited low cytotoxicity towards human intestinal epithelial cells (HIEC-6). Molecular docking studies targeting the NDM-1 β-lactamase identified compounds 4, 6, and 7 as potential inhibitors of New Delhi metallo-β-lactamase-1 (NDM-1). Molecular dynamics simulations confirmed the structural stability of 7 within the NDM-1 active site. Chrysogenotoxin (7) was suggested as a promising antibacterial candidate against antibiotic-resistant pathogens.
期刊介绍:
Journal of Enzyme Inhibition and Medicinal Chemistry publishes open access research on enzyme inhibitors, inhibitory processes, and agonist/antagonist receptor interactions in the development of medicinal and anti-cancer agents.
Journal of Enzyme Inhibition and Medicinal Chemistry aims to provide an international and interdisciplinary platform for the latest findings in enzyme inhibition research.
The journal’s focus includes current developments in:
Enzymology;
Cell biology;
Chemical biology;
Microbiology;
Physiology;
Pharmacology leading to drug design;
Molecular recognition processes;
Distribution and metabolism of biologically active compounds.