Peng Guo, Chenchun Wu, Tong Wang, Yajuan Song, Xiaozi Liu, Xiang Wang, Yuhan Zhu, Binyu Song, Yifu Zhu, Juan Zhang, Lei Guo, Rui Tao, Zhou Yu, Baoqiang Song
{"title":"The key enzyme PYCR1 in proline metabolism: a dual driver of cancer progression and fibrotic remodeling.","authors":"Peng Guo, Chenchun Wu, Tong Wang, Yajuan Song, Xiaozi Liu, Xiang Wang, Yuhan Zhu, Binyu Song, Yifu Zhu, Juan Zhang, Lei Guo, Rui Tao, Zhou Yu, Baoqiang Song","doi":"10.1080/14756366.2025.2545620","DOIUrl":null,"url":null,"abstract":"<p><p>Pyrroline-5-Carboxylate Reductase 1 (PYCR1), a member of the PYCR family, is a key enzyme in the proline biosynthesis pathway. Notably, PYCR1 was originally identified via genetic disease research, linking its mutations to the occurrence of cutis laxa. PYCR1 contributes to the pathogenesis of malignancies and fibrotic diseases via mechanisms involving metabolic reprogramming, Extracellular Matrix (ECM) remodelling, and redox homeostasis maintenance. PYCR1 upregulation has been reported in multiple malignancies including Hepatocellular Carcinoma (HCC), Lung Cancer (LC), Breast Cancer (BC), Bladder Cancer (BlC), and Gastric Cancer (GC), where it has been shown to promote cancer proliferation, migration, and therapy resistance, correlating significantly with advanced cancer stages and poor prognosis. On the other hand, in fibrotic disorders, PYCR1-mediated proline metabolism has been linked to the progression of pulmonary, myocardial, and cutaneous fibroses. Notably, although PYCR1-targeted small-molecule inhibitors have demonstrated therapeutic potential in preclinical studies, their clinical translation is yet to be validated.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"40 1","pages":"2545620"},"PeriodicalIF":5.4000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12406333/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Enzyme Inhibition and Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14756366.2025.2545620","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pyrroline-5-Carboxylate Reductase 1 (PYCR1), a member of the PYCR family, is a key enzyme in the proline biosynthesis pathway. Notably, PYCR1 was originally identified via genetic disease research, linking its mutations to the occurrence of cutis laxa. PYCR1 contributes to the pathogenesis of malignancies and fibrotic diseases via mechanisms involving metabolic reprogramming, Extracellular Matrix (ECM) remodelling, and redox homeostasis maintenance. PYCR1 upregulation has been reported in multiple malignancies including Hepatocellular Carcinoma (HCC), Lung Cancer (LC), Breast Cancer (BC), Bladder Cancer (BlC), and Gastric Cancer (GC), where it has been shown to promote cancer proliferation, migration, and therapy resistance, correlating significantly with advanced cancer stages and poor prognosis. On the other hand, in fibrotic disorders, PYCR1-mediated proline metabolism has been linked to the progression of pulmonary, myocardial, and cutaneous fibroses. Notably, although PYCR1-targeted small-molecule inhibitors have demonstrated therapeutic potential in preclinical studies, their clinical translation is yet to be validated.
期刊介绍:
Journal of Enzyme Inhibition and Medicinal Chemistry publishes open access research on enzyme inhibitors, inhibitory processes, and agonist/antagonist receptor interactions in the development of medicinal and anti-cancer agents.
Journal of Enzyme Inhibition and Medicinal Chemistry aims to provide an international and interdisciplinary platform for the latest findings in enzyme inhibition research.
The journal’s focus includes current developments in:
Enzymology;
Cell biology;
Chemical biology;
Microbiology;
Physiology;
Pharmacology leading to drug design;
Molecular recognition processes;
Distribution and metabolism of biologically active compounds.