Kaixi Cui, Tianzheng Li, Yifei Ma, Chuanjin Zhang, Ke Zhang, Chao Qi, Kaiyong Cai
{"title":"Ultrasound-Responsive Drug Delivery System Based on Piezoelectric Catalytic Mechanisms.","authors":"Kaixi Cui, Tianzheng Li, Yifei Ma, Chuanjin Zhang, Ke Zhang, Chao Qi, Kaiyong Cai","doi":"10.3390/jfb16080304","DOIUrl":null,"url":null,"abstract":"<p><p>Ultrasound-responsive nanomaterials represent a promising approach for achieving non-invasive and localized drug delivery within tumor microenvironments. In this study, we developed a piezocatalysis-assisted hydrogel system that integrates reactive oxygen species (ROS) generation with stimulus-responsive drug release. The platform combines piezoelectric barium titanate (BTO) nanoparticles with a ROS-sensitive hydrogel matrix, forming an ultrasound-activated dual-function therapeutic system. Upon ultrasound irradiation, the BTO nanoparticles generate ROS-predominantly hydroxyl radicals (<sup>•</sup>OH) and singlet oxygen (<sup>1</sup>O<sub>2</sub>)-through the piezoelectric effect, which triggers hydrogel degradation and facilitates the controlled release of encapsulated therapeutic agents. The composition and kinetics of ROS generation were evaluated using radical scavenging assays and fluorescence probe techniques, while the drug release behavior was validated under simulated oxidative environments and acoustic fields. Structural and compositional characterizations (TEM, XRD, and XPS) confirmed the quality and stability of the nanoparticles, and cytocompatibility was assessed using 3T3 fibroblasts. This synergistic strategy, combining piezocatalytic ROS generation with hydrogel disintegration, demonstrates a feasible approach for designing responsive nanoplatforms in ultrasound-mediated drug delivery systems.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 8","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387753/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16080304","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ultrasound-responsive nanomaterials represent a promising approach for achieving non-invasive and localized drug delivery within tumor microenvironments. In this study, we developed a piezocatalysis-assisted hydrogel system that integrates reactive oxygen species (ROS) generation with stimulus-responsive drug release. The platform combines piezoelectric barium titanate (BTO) nanoparticles with a ROS-sensitive hydrogel matrix, forming an ultrasound-activated dual-function therapeutic system. Upon ultrasound irradiation, the BTO nanoparticles generate ROS-predominantly hydroxyl radicals (•OH) and singlet oxygen (1O2)-through the piezoelectric effect, which triggers hydrogel degradation and facilitates the controlled release of encapsulated therapeutic agents. The composition and kinetics of ROS generation were evaluated using radical scavenging assays and fluorescence probe techniques, while the drug release behavior was validated under simulated oxidative environments and acoustic fields. Structural and compositional characterizations (TEM, XRD, and XPS) confirmed the quality and stability of the nanoparticles, and cytocompatibility was assessed using 3T3 fibroblasts. This synergistic strategy, combining piezocatalytic ROS generation with hydrogel disintegration, demonstrates a feasible approach for designing responsive nanoplatforms in ultrasound-mediated drug delivery systems.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.