Ultrasound-Responsive Drug Delivery System Based on Piezoelectric Catalytic Mechanisms.

IF 5.2 3区 医学 Q1 ENGINEERING, BIOMEDICAL
Kaixi Cui, Tianzheng Li, Yifei Ma, Chuanjin Zhang, Ke Zhang, Chao Qi, Kaiyong Cai
{"title":"Ultrasound-Responsive Drug Delivery System Based on Piezoelectric Catalytic Mechanisms.","authors":"Kaixi Cui, Tianzheng Li, Yifei Ma, Chuanjin Zhang, Ke Zhang, Chao Qi, Kaiyong Cai","doi":"10.3390/jfb16080304","DOIUrl":null,"url":null,"abstract":"<p><p>Ultrasound-responsive nanomaterials represent a promising approach for achieving non-invasive and localized drug delivery within tumor microenvironments. In this study, we developed a piezocatalysis-assisted hydrogel system that integrates reactive oxygen species (ROS) generation with stimulus-responsive drug release. The platform combines piezoelectric barium titanate (BTO) nanoparticles with a ROS-sensitive hydrogel matrix, forming an ultrasound-activated dual-function therapeutic system. Upon ultrasound irradiation, the BTO nanoparticles generate ROS-predominantly hydroxyl radicals (<sup>•</sup>OH) and singlet oxygen (<sup>1</sup>O<sub>2</sub>)-through the piezoelectric effect, which triggers hydrogel degradation and facilitates the controlled release of encapsulated therapeutic agents. The composition and kinetics of ROS generation were evaluated using radical scavenging assays and fluorescence probe techniques, while the drug release behavior was validated under simulated oxidative environments and acoustic fields. Structural and compositional characterizations (TEM, XRD, and XPS) confirmed the quality and stability of the nanoparticles, and cytocompatibility was assessed using 3T3 fibroblasts. This synergistic strategy, combining piezocatalytic ROS generation with hydrogel disintegration, demonstrates a feasible approach for designing responsive nanoplatforms in ultrasound-mediated drug delivery systems.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 8","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387753/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16080304","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrasound-responsive nanomaterials represent a promising approach for achieving non-invasive and localized drug delivery within tumor microenvironments. In this study, we developed a piezocatalysis-assisted hydrogel system that integrates reactive oxygen species (ROS) generation with stimulus-responsive drug release. The platform combines piezoelectric barium titanate (BTO) nanoparticles with a ROS-sensitive hydrogel matrix, forming an ultrasound-activated dual-function therapeutic system. Upon ultrasound irradiation, the BTO nanoparticles generate ROS-predominantly hydroxyl radicals (OH) and singlet oxygen (1O2)-through the piezoelectric effect, which triggers hydrogel degradation and facilitates the controlled release of encapsulated therapeutic agents. The composition and kinetics of ROS generation were evaluated using radical scavenging assays and fluorescence probe techniques, while the drug release behavior was validated under simulated oxidative environments and acoustic fields. Structural and compositional characterizations (TEM, XRD, and XPS) confirmed the quality and stability of the nanoparticles, and cytocompatibility was assessed using 3T3 fibroblasts. This synergistic strategy, combining piezocatalytic ROS generation with hydrogel disintegration, demonstrates a feasible approach for designing responsive nanoplatforms in ultrasound-mediated drug delivery systems.

基于压电催化机理的超声响应给药系统。
超声响应纳米材料是一种很有前途的方法,可以在肿瘤微环境中实现非侵入性和局部药物递送。在这项研究中,我们开发了一种压电催化辅助水凝胶系统,该系统将活性氧(ROS)的产生与刺激反应性药物释放结合起来。该平台结合了压电钛酸钡(BTO)纳米颗粒和ros敏感水凝胶基质,形成了超声激活的双功能治疗系统。在超声照射下,BTO纳米颗粒通过压电效应产生ros(主要是羟基自由基(•OH)和单重态氧(1O2)),从而触发水凝胶降解,有利于胶囊化治疗剂的可控释放。利用自由基清除实验和荧光探针技术评估了ROS生成的组成和动力学,同时在模拟氧化环境和声场下验证了药物释放行为。结构和成分表征(TEM、XRD和XPS)证实了纳米颗粒的质量和稳定性,并用3T3成纤维细胞评估了细胞相容性。这种将压电催化ROS生成与水凝胶分解相结合的协同策略,证明了在超声介导的药物传递系统中设计响应性纳米平台的可行方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Functional Biomaterials
Journal of Functional Biomaterials Engineering-Biomedical Engineering
CiteScore
4.60
自引率
4.20%
发文量
226
审稿时长
11 weeks
期刊介绍: Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信