Ruqing Bai, Jiaqi Chen, Ting Zhang, Tao Chen, Xiaoying Liu, Weihu Yang, Tuck-Whye Wong, Jianwei Zhang, Li Wang
{"title":"Photothermally Responsive Biomimetic Composite Scaffolds Based on Polydopamine-Functionalized Nanoparticles/Polyurethane for Bone Repair.","authors":"Ruqing Bai, Jiaqi Chen, Ting Zhang, Tao Chen, Xiaoying Liu, Weihu Yang, Tuck-Whye Wong, Jianwei Zhang, Li Wang","doi":"10.3390/jfb16080294","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, a shape-changeable 3D scaffold with photothermal effects was developed to address the clinical challenges of complex bone defects. The multifunctional construct was fabricated via in situ polymerization combined with a gas foaming technique, creating hierarchical porous architectures that mimic the native bone extracellular matrix. By incorporating polydopamine (PDA)-modified amorphous calcium phosphate (CA) into poly(propylene glycol) (PPG)- and poly(ԑ-caprolactone) (PCL)-based polyurethane (PU). The obtained scaffolds achieved osteoinductive potential for bone tissue engineering. The surface PDA modification of CA enabled efficient photothermal shape conversion under near-infrared (NIR) irradiation, facilitating non-invasive remote control of localized hyperthermia. The optimized scaffolds exhibited interconnected porosity (approximately 70%) with osteoconductive pore channels (200-500 μm), resulting in good osteoinduction in cell culture, and precise shape-memory recovery at physiological temperatures (~40 °C) under NIR for minimally invasive delivery. The synergistic effect of osteogenesis promotion and photothermal transition demonstrated this programmable scaffold as a promising solution for integrated minimally invasive bone repair and defect reconstruction.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 8","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387311/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16080294","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a shape-changeable 3D scaffold with photothermal effects was developed to address the clinical challenges of complex bone defects. The multifunctional construct was fabricated via in situ polymerization combined with a gas foaming technique, creating hierarchical porous architectures that mimic the native bone extracellular matrix. By incorporating polydopamine (PDA)-modified amorphous calcium phosphate (CA) into poly(propylene glycol) (PPG)- and poly(ԑ-caprolactone) (PCL)-based polyurethane (PU). The obtained scaffolds achieved osteoinductive potential for bone tissue engineering. The surface PDA modification of CA enabled efficient photothermal shape conversion under near-infrared (NIR) irradiation, facilitating non-invasive remote control of localized hyperthermia. The optimized scaffolds exhibited interconnected porosity (approximately 70%) with osteoconductive pore channels (200-500 μm), resulting in good osteoinduction in cell culture, and precise shape-memory recovery at physiological temperatures (~40 °C) under NIR for minimally invasive delivery. The synergistic effect of osteogenesis promotion and photothermal transition demonstrated this programmable scaffold as a promising solution for integrated minimally invasive bone repair and defect reconstruction.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.