Gregory E Tasian, Naim M Maalouf, Jonathan D Harper, Sri Sivalingam, Joey Logan, Hussein R Al-Khalidi, John C Lieske, Antoine Selman-Fermin, Alana C Desai, Henry Lai, Ziya Kirkali, Charles D Scales, Yong Fan
{"title":"Validation of an Automated CT Image Analysis in the Prevention of Urinary Stones with Hydration Trial.","authors":"Gregory E Tasian, Naim M Maalouf, Jonathan D Harper, Sri Sivalingam, Joey Logan, Hussein R Al-Khalidi, John C Lieske, Antoine Selman-Fermin, Alana C Desai, Henry Lai, Ziya Kirkali, Charles D Scales, Yong Fan","doi":"10.1089/end.2024.0582","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Introduction and Objective:</i></b> Kidney stone growth and new stone formation are common clinical trial endpoints and are associated with future symptomatic events. To date, a manual review of CT scans has been required to assess stone growth and new stone formation, which is laborious. We validated the performance of a software algorithm that automatically identified, registered, and measured stones over longitudinal CT studies. <b><i>Methods:</i></b> We validated the performance of a pretrained machine learning algorithm to classify stone outcomes on longitudinal CT scan images at baseline and at the end of the 2-year follow-up period for 62 participants aged >18 years in the Prevention of Urinary Stones with Hydration (PUSH) randomized controlled trial. Stones were defined as an area of voxels with a minimum linear dimension of 2 mm that was higher in density than the mean plus 4 standard deviations of all nonnegative HU values within the kidney. The four outcomes assessed were: (1) growth of at least one existing stone by ≥2 mm, (2) formation of at least one new ≥2 mm stone, (3) no stone growth or new stone formation, and (4) loss of at least one stone. The accuracy of the algorithm was determined by comparing its outcomes to the gold standard of independent review of the CT images by at least two expert clinicians. <b><i>Results:</i></b> The algorithm correctly classified outcomes for 61 paired scans (98.4%). One pair that the algorithm incorrectly classified as stone growth was a new renal artery calcification on end-of-study CT. <b><i>Conclusions:</i></b> An automated image analysis method validated for the prospective PUSH trial was highly accurate for determining clinical outcomes of new stone formation, stone growth, stable stone size, and stone loss on longitudinal CT images. This method has the potential to improve the accuracy and efficiency of clinical care and endpoint determination for future clinical trials.</p>","PeriodicalId":15723,"journal":{"name":"Journal of endourology","volume":" ","pages":"953-959"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of endourology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/end.2024.0582","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction and Objective: Kidney stone growth and new stone formation are common clinical trial endpoints and are associated with future symptomatic events. To date, a manual review of CT scans has been required to assess stone growth and new stone formation, which is laborious. We validated the performance of a software algorithm that automatically identified, registered, and measured stones over longitudinal CT studies. Methods: We validated the performance of a pretrained machine learning algorithm to classify stone outcomes on longitudinal CT scan images at baseline and at the end of the 2-year follow-up period for 62 participants aged >18 years in the Prevention of Urinary Stones with Hydration (PUSH) randomized controlled trial. Stones were defined as an area of voxels with a minimum linear dimension of 2 mm that was higher in density than the mean plus 4 standard deviations of all nonnegative HU values within the kidney. The four outcomes assessed were: (1) growth of at least one existing stone by ≥2 mm, (2) formation of at least one new ≥2 mm stone, (3) no stone growth or new stone formation, and (4) loss of at least one stone. The accuracy of the algorithm was determined by comparing its outcomes to the gold standard of independent review of the CT images by at least two expert clinicians. Results: The algorithm correctly classified outcomes for 61 paired scans (98.4%). One pair that the algorithm incorrectly classified as stone growth was a new renal artery calcification on end-of-study CT. Conclusions: An automated image analysis method validated for the prospective PUSH trial was highly accurate for determining clinical outcomes of new stone formation, stone growth, stable stone size, and stone loss on longitudinal CT images. This method has the potential to improve the accuracy and efficiency of clinical care and endpoint determination for future clinical trials.
期刊介绍:
Journal of Endourology, JE Case Reports, and Videourology are the leading peer-reviewed journal, case reports publication, and innovative videojournal companion covering all aspects of minimally invasive urology research, applications, and clinical outcomes.
The leading journal of minimally invasive urology for over 30 years, Journal of Endourology is the essential publication for practicing surgeons who want to keep up with the latest surgical technologies in endoscopic, laparoscopic, robotic, and image-guided procedures as they apply to benign and malignant diseases of the genitourinary tract. This flagship journal includes the companion videojournal Videourology™ with every subscription. While Journal of Endourology remains focused on publishing rigorously peer reviewed articles, Videourology accepts original videos containing material that has not been reported elsewhere, except in the form of an abstract or a conference presentation.
Journal of Endourology coverage includes:
The latest laparoscopic, robotic, endoscopic, and image-guided techniques for treating both benign and malignant conditions
Pioneering research articles
Controversial cases in endourology
Techniques in endourology with accompanying videos
Reviews and epochs in endourology
Endourology survey section of endourology relevant manuscripts published in other journals.