Xiao-Jing Zhang, Jiajun Fu, Xu Cheng, Hong Shen, Hailong Yang, Kun Wang, Wei Li, Han Tian, Tian Tian, Junjie Zhou, Song Tian, Zhouxiang Wang, Juan Wan, Lan Bai, Hongfei Duan, Xin Zhang, Ruifeng Tian, Haibo Xu, Rufang Liao, Toujun Zou, Jing Shi, Weiyi Qu, Liang Fang, Jingjing Cai, Peng Zhang, Zhi-Gang She, Jingwei Jiang, Yufeng Hu, Yibin Wang, Hongliang Li
{"title":"Integrated screening identifies GPR31 as a key driver and druggable target for metabolic dysfunction-associated steatohepatitis.","authors":"Xiao-Jing Zhang, Jiajun Fu, Xu Cheng, Hong Shen, Hailong Yang, Kun Wang, Wei Li, Han Tian, Tian Tian, Junjie Zhou, Song Tian, Zhouxiang Wang, Juan Wan, Lan Bai, Hongfei Duan, Xin Zhang, Ruifeng Tian, Haibo Xu, Rufang Liao, Toujun Zou, Jing Shi, Weiyi Qu, Liang Fang, Jingjing Cai, Peng Zhang, Zhi-Gang She, Jingwei Jiang, Yufeng Hu, Yibin Wang, Hongliang Li","doi":"10.1172/JCI173193","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic dysfunction-associated steatohepatitis (MASH) is a globally prevalent but intractable disease lacking effective pharmacotherapies. Here, we performed an integrated multilayered screening for pathogenic genes and druggable targets for MASH. We identified the subclass of metabolite-sensing G protein-coupled receptors, specifically GPR31, a critical contributor to MASH occurrence, which, to our knowledge, was previously uncharacterized. Mechanistically, Gαi3 is the essential downstream effector for the pro-MASH efficiency of GPR31 via glycosylation-dependent interaction with GPR31 and extra activation of PKCδ-MAPK signaling. Hepatocyte-specific GPR31 deficiency robustly blocked hepatic lipotoxicity and fibrosis in a mouse model of diet-induced MASH, whereas expression of the GPR31 transgene aggravated MASH development. Of translational importance, we developed a small-molecule inhibitor, named G4451, that specifically inhibits the GPR31-Gαi3 interaction by targeting the GPR31 conformational transition. Encouragingly, oral administration of G4451 effectively blocked MASH progression in preclinical models in both rodents and nonhuman primates. Collectively, the present study provides proof of concept that interference with GPR31 constitutes an attractive therapeutic strategy for MASH.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"135 17","pages":""},"PeriodicalIF":13.6000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12404741/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI173193","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a globally prevalent but intractable disease lacking effective pharmacotherapies. Here, we performed an integrated multilayered screening for pathogenic genes and druggable targets for MASH. We identified the subclass of metabolite-sensing G protein-coupled receptors, specifically GPR31, a critical contributor to MASH occurrence, which, to our knowledge, was previously uncharacterized. Mechanistically, Gαi3 is the essential downstream effector for the pro-MASH efficiency of GPR31 via glycosylation-dependent interaction with GPR31 and extra activation of PKCδ-MAPK signaling. Hepatocyte-specific GPR31 deficiency robustly blocked hepatic lipotoxicity and fibrosis in a mouse model of diet-induced MASH, whereas expression of the GPR31 transgene aggravated MASH development. Of translational importance, we developed a small-molecule inhibitor, named G4451, that specifically inhibits the GPR31-Gαi3 interaction by targeting the GPR31 conformational transition. Encouragingly, oral administration of G4451 effectively blocked MASH progression in preclinical models in both rodents and nonhuman primates. Collectively, the present study provides proof of concept that interference with GPR31 constitutes an attractive therapeutic strategy for MASH.
期刊介绍:
The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science.
The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others.
The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.