{"title":"Integrated screens identify AURKB dependency in advanced gastrointestinal stromal tumors.","authors":"Yumei Cheng, Haoqi Lan, Xiaojing Lu, Chunling Zeng, Yue Dong, Yanying Shen, Yuxiang Luo, Yangjie Xiong, Xiaofang Wang, Jianzhi Cui, Lechun Hou, Xiaona Jia, Hui Cao, Simin Wang, Ming Wang, Yuexiang Wang","doi":"10.1084/jem.20250256","DOIUrl":null,"url":null,"abstract":"<p><p>The only approved systemic treatments for gastrointestinal stromal tumors (GISTs) are KIT/PDGFRA-directed tyrosine kinase inhibitors (TKIs), which eventually lead to the development of secondary polyclonal resistance mutations. Complementary treatment strategies are urgently needed. Using transcriptomic profiling, CRISPR screens, and chemical screens, we identify aurora kinase B (AURKB) as a previously less recognized therapeutic vulnerability to advanced GISTs. AURKB is frequently overexpressed in high-risk and metastatic GISTs but not in low-/intermediate-risk GISTs across our two patient cohorts, with FOXM1 responsible for AURKB overexpression. Genetic depletion of AURKB inhibits GIST proliferation and growth in vitro and in vivo. Mechanistically, our mass spectrometry-based proteomics screen further reveals that AURKB binds to and stabilizes ATAD2 via the ubiquitin-proteasome system, enhancing chromatin accessibility for DNA damage repair genes. Notably, AURKB inhibitors demonstrate potent efficacy in multiple preclinical GIST cell models and xenograft models at safe doses, overcoming TKI resistance. Our comprehensive approaches define unique AURKB-ATAD2 dependency in GISTs and identify non-receptor tyrosine kinase therapeutic strategies for clinical translation.</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":"222 11","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2025-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1084/jem.20250256","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The only approved systemic treatments for gastrointestinal stromal tumors (GISTs) are KIT/PDGFRA-directed tyrosine kinase inhibitors (TKIs), which eventually lead to the development of secondary polyclonal resistance mutations. Complementary treatment strategies are urgently needed. Using transcriptomic profiling, CRISPR screens, and chemical screens, we identify aurora kinase B (AURKB) as a previously less recognized therapeutic vulnerability to advanced GISTs. AURKB is frequently overexpressed in high-risk and metastatic GISTs but not in low-/intermediate-risk GISTs across our two patient cohorts, with FOXM1 responsible for AURKB overexpression. Genetic depletion of AURKB inhibits GIST proliferation and growth in vitro and in vivo. Mechanistically, our mass spectrometry-based proteomics screen further reveals that AURKB binds to and stabilizes ATAD2 via the ubiquitin-proteasome system, enhancing chromatin accessibility for DNA damage repair genes. Notably, AURKB inhibitors demonstrate potent efficacy in multiple preclinical GIST cell models and xenograft models at safe doses, overcoming TKI resistance. Our comprehensive approaches define unique AURKB-ATAD2 dependency in GISTs and identify non-receptor tyrosine kinase therapeutic strategies for clinical translation.
期刊介绍:
Since its establishment in 1896, the Journal of Experimental Medicine (JEM) has steadfastly pursued the publication of enduring and exceptional studies in medical biology. In an era where numerous publishing groups are introducing specialized journals, we recognize the importance of offering a distinguished platform for studies that seamlessly integrate various disciplines within the pathogenesis field.
Our unique editorial system, driven by a commitment to exceptional author service, involves two collaborative groups of editors: professional editors with robust scientific backgrounds and full-time practicing scientists. Each paper undergoes evaluation by at least one editor from both groups before external review. Weekly editorial meetings facilitate comprehensive discussions on papers, incorporating external referee comments, and ensure swift decisions without unnecessary demands for extensive revisions.
Encompassing human studies and diverse in vivo experimental models of human disease, our focus within medical biology spans genetics, inflammation, immunity, infectious disease, cancer, vascular biology, metabolic disorders, neuroscience, and stem cell biology. We eagerly welcome reports ranging from atomic-level analyses to clinical interventions that unveil new mechanistic insights.