{"title":"Fabrication, characterization and in vitro evaluation of PCL/PVA nanofibers loaded with docetaxel in breast cancer cells.","authors":"Zeynab Zamanzade, Shohreh Fahimirad, Maryam Darvish","doi":"10.1080/09205063.2025.2551922","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer ranks as the second highest cause of mortality among women, and docetaxel (DTX) is a potent anticancer agent whose therapeutic effects can be optimized using nanofibers (NFs)-based drug delivery systems (DDSs). In this study, DTX-loaded NFs were fabricated using polycaprolactone (PCL) and polyvinyl alcohol (PVA) <i>via</i> electrospinning. Scanning electron microscopy (SEM) revealed smooth, bead-free morphology with random fiber orientation. Fourier-transform infrared spectroscopy (FTIR) confirmed successful DTX loading. <i>In vitro</i> drug release assays revealed an initial burst release of approximately 72% within the first 24 h, followed by sustained release over 4 days, resulting in a total of 90% drug release over 7 days. Cytotoxicity studies showed DTX-NFs induced a significant reduction in MCF-7 cell viability, with a 60% decrease in cell viability compared to the control group and a 40% increase compared to free DTX at the same concentration after 24 h. DTX-NFs reduced cell migration by 45% and colony formation decreased by 50% compared to the free DTX treatment. In conclusion, DTX-loaded PCL/PVA NFs demonstrated promising anticancer efficacy, sustained drug release and reduced migration and colony formation in MCF-7 cells, making them a potential strategy for postoperative local chemotherapy and prevention of breast cancer recurrence.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-22"},"PeriodicalIF":3.6000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2025.2551922","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer ranks as the second highest cause of mortality among women, and docetaxel (DTX) is a potent anticancer agent whose therapeutic effects can be optimized using nanofibers (NFs)-based drug delivery systems (DDSs). In this study, DTX-loaded NFs were fabricated using polycaprolactone (PCL) and polyvinyl alcohol (PVA) via electrospinning. Scanning electron microscopy (SEM) revealed smooth, bead-free morphology with random fiber orientation. Fourier-transform infrared spectroscopy (FTIR) confirmed successful DTX loading. In vitro drug release assays revealed an initial burst release of approximately 72% within the first 24 h, followed by sustained release over 4 days, resulting in a total of 90% drug release over 7 days. Cytotoxicity studies showed DTX-NFs induced a significant reduction in MCF-7 cell viability, with a 60% decrease in cell viability compared to the control group and a 40% increase compared to free DTX at the same concentration after 24 h. DTX-NFs reduced cell migration by 45% and colony formation decreased by 50% compared to the free DTX treatment. In conclusion, DTX-loaded PCL/PVA NFs demonstrated promising anticancer efficacy, sustained drug release and reduced migration and colony formation in MCF-7 cells, making them a potential strategy for postoperative local chemotherapy and prevention of breast cancer recurrence.
期刊介绍:
The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels.
The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.