{"title":"Modeling water using multipole response tensors fitted to the monomer geometry.","authors":"Jonatan Öström, Lars G M Pettersson","doi":"10.1063/5.0279764","DOIUrl":null,"url":null,"abstract":"<p><p>The water molecule's electronic Cartesian multipole moment and polarizability tensors have been fitted with Gaussian process regression to the internal coordinates and are used to evaluate accurate electrostatic, induction, and dispersion energy components between flexible molecules. The model yields a handful of damping and scaling parameters that were adjusted for the energy components to agree with 2-body symmetry-adapted perturbation theory decomposition and then fine-tuned in order for the total energy to agree with CCSD(T) for small clusters. We present a simple algorithm for rotating symmetric Cartesian tensors and employ a dispersion potential based on multipole polarizabilities. At short range, the 2- and 3-body potential energy was corrected to CCSD(T) accuracy using Gaussian approximation potentials. The radial distribution function and self-diffusion coefficient obtained with molecular dynamics simulations agree well with experiments.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"163 9","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0279764","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The water molecule's electronic Cartesian multipole moment and polarizability tensors have been fitted with Gaussian process regression to the internal coordinates and are used to evaluate accurate electrostatic, induction, and dispersion energy components between flexible molecules. The model yields a handful of damping and scaling parameters that were adjusted for the energy components to agree with 2-body symmetry-adapted perturbation theory decomposition and then fine-tuned in order for the total energy to agree with CCSD(T) for small clusters. We present a simple algorithm for rotating symmetric Cartesian tensors and employ a dispersion potential based on multipole polarizabilities. At short range, the 2- and 3-body potential energy was corrected to CCSD(T) accuracy using Gaussian approximation potentials. The radial distribution function and self-diffusion coefficient obtained with molecular dynamics simulations agree well with experiments.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.