{"title":"Phosphatidylinositol-Specific Phospholipase C Across Biological Kingdoms: Domain Organization, Functions, and Regulation.","authors":"Kaori Kanemaru, Yoshikazu Nakamura","doi":"10.1093/jb/mvaf051","DOIUrl":null,"url":null,"abstract":"<p><p>Phospholipase C (PLC) plays crucial roles in phospholipid metabolism by generating second messengers regulating diverse cellular processes. PLCs are classified into phosphatidylinositol-specific PLCs (PI-PLCs) and non-specific PLCs. Among them, PI-PLCs are highly conserved across mammals, plants, and bacteria, with distinct structural organizations and regulatory mechanisms. Mammalian PI-PLCs participate in intracellular signaling and modulate various pathways, such as the G protein-coupled receptor- and receptor tyrosine kinase-mediated cascades, whereas plant PI-PLCs regulate the growth and stress responses via phosphatidic acid and inositol phosphate signaling. Bacterial PI-PLCs contribute to virulence by targeting the host cell membranes and glycosylphosphatidylinositol-anchored proteins. Despite structural variations, PI-PLCs share conserved catalytic mechanisms integral to cellular physiology across different organisms. This review article highlights the structural diversity and functional significance of PI-PLCs in mammals, plants, and bacteria.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jb/mvaf051","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Phospholipase C (PLC) plays crucial roles in phospholipid metabolism by generating second messengers regulating diverse cellular processes. PLCs are classified into phosphatidylinositol-specific PLCs (PI-PLCs) and non-specific PLCs. Among them, PI-PLCs are highly conserved across mammals, plants, and bacteria, with distinct structural organizations and regulatory mechanisms. Mammalian PI-PLCs participate in intracellular signaling and modulate various pathways, such as the G protein-coupled receptor- and receptor tyrosine kinase-mediated cascades, whereas plant PI-PLCs regulate the growth and stress responses via phosphatidic acid and inositol phosphate signaling. Bacterial PI-PLCs contribute to virulence by targeting the host cell membranes and glycosylphosphatidylinositol-anchored proteins. Despite structural variations, PI-PLCs share conserved catalytic mechanisms integral to cellular physiology across different organisms. This review article highlights the structural diversity and functional significance of PI-PLCs in mammals, plants, and bacteria.
期刊介绍:
The Journal of Biochemistry founded in 1922 publishes the results of original research in the fields of Biochemistry, Molecular Biology, Cell, and Biotechnology written in English in the form of Regular Papers or Rapid Communications. A Rapid Communication is not a preliminary note, but it is, though brief, a complete and final publication. The materials described in Rapid Communications should not be included in a later paper. The Journal also publishes short reviews (JB Review) and papers solicited by the Editorial Board.