De novo synthesis of peroxisomes: How they are born.

IF 1.7 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ayumu Sugiura
{"title":"De novo synthesis of peroxisomes: How they are born.","authors":"Ayumu Sugiura","doi":"10.1093/jb/mvaf048","DOIUrl":null,"url":null,"abstract":"<p><p>Peroxisomes are dynamic organelles found in almost all eukaryotic cells and play a central role in intracellular metabolism. The number of peroxisomes is maintained through the balance of peroxisome biogenesis and degradation. Peroxisomes multiply by growth and division from preexisting peroxisomes but have also been shown to be synthesized de novo under experimental conditions. During de novo synthesis, pre-peroxisome vesicles mature in a stepwise process into functional peroxisomes. While the growth and division cycle is well studied, de novo synthesis, including whether it physiologically occurs, remains poorly understood. Although studies using several models have been proposed, the origin of the membranes required for peroxisome assembly remain controversial. This review provides an overview of the studies on de novo synthesis of peroxisomes in multiple organisms and discusses the evolutionary insights and biological meanings of peroxisome de novo synthesis.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jb/mvaf048","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Peroxisomes are dynamic organelles found in almost all eukaryotic cells and play a central role in intracellular metabolism. The number of peroxisomes is maintained through the balance of peroxisome biogenesis and degradation. Peroxisomes multiply by growth and division from preexisting peroxisomes but have also been shown to be synthesized de novo under experimental conditions. During de novo synthesis, pre-peroxisome vesicles mature in a stepwise process into functional peroxisomes. While the growth and division cycle is well studied, de novo synthesis, including whether it physiologically occurs, remains poorly understood. Although studies using several models have been proposed, the origin of the membranes required for peroxisome assembly remain controversial. This review provides an overview of the studies on de novo synthesis of peroxisomes in multiple organisms and discusses the evolutionary insights and biological meanings of peroxisome de novo synthesis.

过氧化物酶体的新生合成:它们是如何产生的。
过氧化物酶体是几乎存在于所有真核细胞中的动态细胞器,在细胞内代谢中起着核心作用。过氧化物酶体的数量是通过过氧化物酶体生物生成和降解的平衡来维持的。过氧化物酶体通过生长和分裂从先前存在的过氧化物酶体繁殖,但也显示在实验条件下重新合成。在从头合成过程中,过氧化物酶体前体囊泡逐步成熟为功能性过氧化物酶体。虽然生长和分裂周期已经得到了很好的研究,但从头合成,包括它是否在生理上发生,仍然知之甚少。虽然已经提出了使用几种模型的研究,但过氧化物酶体组装所需的膜的起源仍然存在争议。本文综述了过氧化物酶体在多种生物体内从头合成的研究进展,并讨论了过氧化物酶体从头合成的进化意义和生物学意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of biochemistry
Journal of biochemistry 生物-生化与分子生物学
CiteScore
4.80
自引率
3.70%
发文量
101
审稿时长
4-8 weeks
期刊介绍: The Journal of Biochemistry founded in 1922 publishes the results of original research in the fields of Biochemistry, Molecular Biology, Cell, and Biotechnology written in English in the form of Regular Papers or Rapid Communications. A Rapid Communication is not a preliminary note, but it is, though brief, a complete and final publication. The materials described in Rapid Communications should not be included in a later paper. The Journal also publishes short reviews (JB Review) and papers solicited by the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信