René Hanke, Michaela Sieben, Maurice Finger, Kilian Schnoor, Simon Jeßberger, Julia Weyand, Lluìs Coloma de la Fuente, Marcel Mann, Amizon Azizan, Udo Kosfeld, Jochen Büchs
{"title":"Simultaneous online monitoring of viscosity and oxygen transfer rate in shake flask cultures.","authors":"René Hanke, Michaela Sieben, Maurice Finger, Kilian Schnoor, Simon Jeßberger, Julia Weyand, Lluìs Coloma de la Fuente, Marcel Mann, Amizon Azizan, Udo Kosfeld, Jochen Büchs","doi":"10.1186/s13036-025-00552-6","DOIUrl":null,"url":null,"abstract":"<p><p>Shake flasks are among the most relevant culture vessels for early-stage process development of viscous microbial cultures. While online process monitoring systems are available for temperature, pH, biomass concentration, dissolved oxygen tension and respiration activity, online measuring techniques for viscosity are not yet commercially available. Especially during the production of biopolymers and the cultivation of filamentous fungi or bacteria, quantification of fermentation broth viscosity is essential to ensure adequate mixing as well as gas/liquid mass and heat transfer. In this work, a previously developed quantitative online viscosity measurement technique, termed ViMOS, is refined to monitor the apparent viscosity of up to eight shake flask cultures in parallel. In addition, the necessary preparation to ensure reproducible measurements is elucidated. By cultivating the two exopolysaccharide forming bacterial strains, Paenibacillus polymyxa and Xanthomonas campestris, as well as the filamentous fungus Trichoderma reesei, the ViMOS was successfully validated for viscosity values up to 120 mPa·s. The combination with oxygen transfer rate monitoring via a RAMOS device allowed to detect microbial growth phases, oxygen limitations, biopolymer production and degradation, as well as the morphological development of filamentous cultures. This dual online monitoring has the potential to improve screening conditions and simplify scale-up procedures of small-scale bioprocesses.</p>","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"19 1","pages":"77"},"PeriodicalIF":6.5000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12374283/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Engineering","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13036-025-00552-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Shake flasks are among the most relevant culture vessels for early-stage process development of viscous microbial cultures. While online process monitoring systems are available for temperature, pH, biomass concentration, dissolved oxygen tension and respiration activity, online measuring techniques for viscosity are not yet commercially available. Especially during the production of biopolymers and the cultivation of filamentous fungi or bacteria, quantification of fermentation broth viscosity is essential to ensure adequate mixing as well as gas/liquid mass and heat transfer. In this work, a previously developed quantitative online viscosity measurement technique, termed ViMOS, is refined to monitor the apparent viscosity of up to eight shake flask cultures in parallel. In addition, the necessary preparation to ensure reproducible measurements is elucidated. By cultivating the two exopolysaccharide forming bacterial strains, Paenibacillus polymyxa and Xanthomonas campestris, as well as the filamentous fungus Trichoderma reesei, the ViMOS was successfully validated for viscosity values up to 120 mPa·s. The combination with oxygen transfer rate monitoring via a RAMOS device allowed to detect microbial growth phases, oxygen limitations, biopolymer production and degradation, as well as the morphological development of filamentous cultures. This dual online monitoring has the potential to improve screening conditions and simplify scale-up procedures of small-scale bioprocesses.
期刊介绍:
Biological engineering is an emerging discipline that encompasses engineering theory and practice connected to and derived from the science of biology, just as mechanical engineering and electrical engineering are rooted in physics and chemical engineering in chemistry. Topical areas include, but are not limited to:
Synthetic biology and cellular design
Biomolecular, cellular and tissue engineering
Bioproduction and metabolic engineering
Biosensors
Ecological and environmental engineering
Biological engineering education and the biodesign process
As the official journal of the Institute of Biological Engineering, Journal of Biological Engineering provides a home for the continuum from biological information science, molecules and cells, product formation, wastes and remediation, and educational advances in curriculum content and pedagogy at the undergraduate and graduate-levels.
Manuscripts should explore commonalities with other fields of application by providing some discussion of the broader context of the work and how it connects to other areas within the field.