Role of thioredoxin reductase (TrxB) in oxidative stress response of Francisella tularensis live vaccine strain.

IF 3 3区 生物学 Q3 MICROBIOLOGY
Matthew Higgs, Zhuo Ma, Anthony Centone, Chandra Shekhar Bakshi, Meenakshi Malik
{"title":"Role of thioredoxin reductase (TrxB) in oxidative stress response of <i>Francisella tularensis</i> live vaccine strain.","authors":"Matthew Higgs, Zhuo Ma, Anthony Centone, Chandra Shekhar Bakshi, Meenakshi Malik","doi":"10.1128/jb.00173-25","DOIUrl":null,"url":null,"abstract":"<p><p><i>Francisella tularensis</i> is an important human pathogen responsible for causing tularemia in the Northern Hemisphere. <i>Francisella</i> has been developed as a biological weapon in the past due to its extremely high virulence. <i>F. tularensis</i> is a gram-negative, intracellular pathogen that primarily infects macrophages. <i>F. tularensis</i> encodes a repertoire of antioxidant enzymes to counteract the reactive oxygen and nitrogen species (ROS/RNS) produced by macrophages in response to infection. Among these, the thioredoxin system is critical for maintaining cellular redox homeostasis by regulating the balance between oxidation and reduction within bacterial cells. This system includes thioredoxins, thioredoxin reductase, and NADPH. Despite its potential importance, the thioredoxin system of <i>F. tularensis</i> remains understudied. <i>F. tularensis</i> live vaccine strain (LVS) possesses two thioredoxin genes, <i>trxA1</i> (<i>FTL_0611</i>) and <i>trxA2</i> (<i>FTL_1224</i>), and a single thioredoxin reductase gene, <i>trxB</i> (<i>FTL_1571</i>). In this study, we characterized the role of <i>trxB</i> of <i>F. tularensis</i> LVS in oxidative stress resistance. Our findings demonstrate that <i>trxB</i> is essential for oxidative stress resistance in <i>F. tularensis</i> and that its loss increases susceptibility to several antibiotics. However, unlike other bacterial species, TrxB in <i>F. tularensis</i> is not a functional target of the gold-containing antimicrobial agent auranofin. We also show that OxyR, the master regulator of oxidative stress responses, directly controls <i>trxB</i> expression under oxidative stress conditions. Furthermore, TrxB contributes to intramacrophage survival by enabling the bacterium to withstand ROS-induced oxidative stress. Collectively, this study highlights a critical, previously uncharacterized antioxidant defense mechanism in <i>F. tularensis</i> and its importance in oxidative stress resistance and intramacrophage survival.</p><p><strong>Importance: </strong>This study elucidates the function of the <i>trxB</i> gene, which encodes a thioredoxin reductase, in overcoming oxidative stress by <i>Francisella tularensis</i>. Loss of the <i>trxB</i> gene results in enhanced susceptibility to oxidants, diminished intracellular survival, and antibiotic resistance. Unlike other bacterial species, <i>F. tularensis</i> TrxB is not a functional target of auranofin, a gold-containing antimicrobial compound, suggesting divergence in thioredoxin system interactions. Furthermore, transcriptional regulation of <i>trxB</i> by OxyR in response to oxidative stress highlights an adaptive control mechanism essential to resist oxidative stress. These findings provide a mechanistic understanding of <i>F. tularensis</i> antioxidant defenses and their role in intramacrophage survival.</p>","PeriodicalId":15107,"journal":{"name":"Journal of Bacteriology","volume":" ","pages":"e0017325"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12478593/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bacteriology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/jb.00173-25","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Francisella tularensis is an important human pathogen responsible for causing tularemia in the Northern Hemisphere. Francisella has been developed as a biological weapon in the past due to its extremely high virulence. F. tularensis is a gram-negative, intracellular pathogen that primarily infects macrophages. F. tularensis encodes a repertoire of antioxidant enzymes to counteract the reactive oxygen and nitrogen species (ROS/RNS) produced by macrophages in response to infection. Among these, the thioredoxin system is critical for maintaining cellular redox homeostasis by regulating the balance between oxidation and reduction within bacterial cells. This system includes thioredoxins, thioredoxin reductase, and NADPH. Despite its potential importance, the thioredoxin system of F. tularensis remains understudied. F. tularensis live vaccine strain (LVS) possesses two thioredoxin genes, trxA1 (FTL_0611) and trxA2 (FTL_1224), and a single thioredoxin reductase gene, trxB (FTL_1571). In this study, we characterized the role of trxB of F. tularensis LVS in oxidative stress resistance. Our findings demonstrate that trxB is essential for oxidative stress resistance in F. tularensis and that its loss increases susceptibility to several antibiotics. However, unlike other bacterial species, TrxB in F. tularensis is not a functional target of the gold-containing antimicrobial agent auranofin. We also show that OxyR, the master regulator of oxidative stress responses, directly controls trxB expression under oxidative stress conditions. Furthermore, TrxB contributes to intramacrophage survival by enabling the bacterium to withstand ROS-induced oxidative stress. Collectively, this study highlights a critical, previously uncharacterized antioxidant defense mechanism in F. tularensis and its importance in oxidative stress resistance and intramacrophage survival.

Importance: This study elucidates the function of the trxB gene, which encodes a thioredoxin reductase, in overcoming oxidative stress by Francisella tularensis. Loss of the trxB gene results in enhanced susceptibility to oxidants, diminished intracellular survival, and antibiotic resistance. Unlike other bacterial species, F. tularensis TrxB is not a functional target of auranofin, a gold-containing antimicrobial compound, suggesting divergence in thioredoxin system interactions. Furthermore, transcriptional regulation of trxB by OxyR in response to oxidative stress highlights an adaptive control mechanism essential to resist oxidative stress. These findings provide a mechanistic understanding of F. tularensis antioxidant defenses and their role in intramacrophage survival.

硫氧还蛋白还原酶(TrxB)在土拉菌活疫苗株氧化应激反应中的作用
土拉菌是北半球引起土拉菌病的重要人类病原体。由于其极高的毒性,弗朗西斯塞拉在过去被开发为一种生物武器。土拉菌是一种革兰氏阴性的细胞内病原体,主要感染巨噬细胞。土拉菌编码一系列抗氧化酶,以对抗巨噬细胞在感染时产生的活性氧和活性氮(ROS/RNS)。其中,硫氧还蛋白系统通过调节细菌细胞内氧化和还原之间的平衡,对维持细胞氧化还原稳态至关重要。该系统包括硫氧还蛋白、硫氧还蛋白还原酶和NADPH。尽管具有潜在的重要性,但土拉菌的硫氧还蛋白系统仍未得到充分研究。土拉菌活疫苗株(LVS)具有两个硫氧还蛋白基因trxA1 (FTL_0611)和trxA2 (FTL_1224),以及一个硫氧还蛋白还原酶基因trxB (FTL_1571)。在本研究中,我们鉴定了土拉菌LVS的trxB在抗氧化应激中的作用。我们的研究结果表明,trxB对土拉菌的氧化应激抗性至关重要,它的丢失会增加对几种抗生素的敏感性。然而,与其他细菌不同的是,土拉菌中的TrxB不是含金抗菌剂金嘌呤的功能靶点。我们还发现,氧化应激反应的主要调控因子OxyR直接控制氧化应激条件下trxB的表达。此外,TrxB通过使细菌耐受ros诱导的氧化应激,有助于巨噬细胞内存活。总的来说,这项研究强调了土拉菌中一个关键的、以前未被表征的抗氧化防御机制,以及它在氧化应激抵抗和巨噬细胞存活中的重要性。重要性:本研究阐明了编码硫氧还蛋白还原酶的trxB基因在克服土拉菌氧化应激中的作用。trxB基因的缺失导致对氧化剂的敏感性增强,细胞内存活率降低和抗生素耐药性。与其他细菌不同,土拉菌TrxB不是含金抗菌化合物金氧蛋白的功能靶点,这表明硫氧还蛋白系统相互作用存在差异。此外,氧化应激对trxB的转录调控也凸显了抗氧化应激所必需的适应性控制机制。这些发现为土拉菌抗氧化防御及其在巨噬细胞存活中的作用提供了机制理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Bacteriology
Journal of Bacteriology 生物-微生物学
CiteScore
6.10
自引率
9.40%
发文量
324
审稿时长
1.3 months
期刊介绍: The Journal of Bacteriology (JB) publishes research articles that probe fundamental processes in bacteria, archaea and their viruses, and the molecular mechanisms by which they interact with each other and with their hosts and their environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信