Nico Steckhan, Tanja Manlik, Tillmann Int-Veen, Beeke Peters, Christina Laetitia Pappe, Daniela A Koppold, Bert Arnrich, Andreas Michalsen, Henrik Dommisch, Peter Schwarz, Olga Pivovarova-Ramich
{"title":"Sensor-based evaluation of intermittent fasting regimes: a machine learning and statistical approach.","authors":"Nico Steckhan, Tanja Manlik, Tillmann Int-Veen, Beeke Peters, Christina Laetitia Pappe, Daniela A Koppold, Bert Arnrich, Andreas Michalsen, Henrik Dommisch, Peter Schwarz, Olga Pivovarova-Ramich","doi":"10.1038/s41366-025-01889-0","DOIUrl":null,"url":null,"abstract":"<p><p>The primary aim was to develop and assess the performance and applicability of different models utilizing sensor data to determine dietary adherence, specifically within the context of intermittent fasting. Our approach utilized time-series data from two completed human trials, which included continuous glucose monitoring, acceleration data, and food diaries, and a synthetic data set. Machine learning models achieved an average F1-score of 0.88 in distinguishing between fasting and non-fasting times, indicating a high level of reliability in classifying fasting states. The Hutchison Heuristic statistical method, while more moderate in performance, proved to be robust across different cohorts, including individuals with and without type 1 diabetes. A dashboard was developed to visualize results efficiently and in a user-friendly manner. The findings highlight the effectiveness of using sensor data, combined with advanced statistical and machine learning approaches, to passively evaluate dietary adherence in an intermittent fasting context.</p>","PeriodicalId":14183,"journal":{"name":"International Journal of Obesity","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Obesity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41366-025-01889-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
The primary aim was to develop and assess the performance and applicability of different models utilizing sensor data to determine dietary adherence, specifically within the context of intermittent fasting. Our approach utilized time-series data from two completed human trials, which included continuous glucose monitoring, acceleration data, and food diaries, and a synthetic data set. Machine learning models achieved an average F1-score of 0.88 in distinguishing between fasting and non-fasting times, indicating a high level of reliability in classifying fasting states. The Hutchison Heuristic statistical method, while more moderate in performance, proved to be robust across different cohorts, including individuals with and without type 1 diabetes. A dashboard was developed to visualize results efficiently and in a user-friendly manner. The findings highlight the effectiveness of using sensor data, combined with advanced statistical and machine learning approaches, to passively evaluate dietary adherence in an intermittent fasting context.
期刊介绍:
The International Journal of Obesity is a multi-disciplinary forum for research describing basic, clinical and applied studies in biochemistry, physiology, genetics and nutrition, molecular, metabolic, psychological and epidemiological aspects of obesity and related disorders.
We publish a range of content types including original research articles, technical reports, reviews, correspondence and brief communications that elaborate on significant advances in the field and cover topical issues.