Sensor-based evaluation of intermittent fasting regimes: a machine learning and statistical approach.

IF 3.8 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Nico Steckhan, Tanja Manlik, Tillmann Int-Veen, Beeke Peters, Christina Laetitia Pappe, Daniela A Koppold, Bert Arnrich, Andreas Michalsen, Henrik Dommisch, Peter Schwarz, Olga Pivovarova-Ramich
{"title":"Sensor-based evaluation of intermittent fasting regimes: a machine learning and statistical approach.","authors":"Nico Steckhan, Tanja Manlik, Tillmann Int-Veen, Beeke Peters, Christina Laetitia Pappe, Daniela A Koppold, Bert Arnrich, Andreas Michalsen, Henrik Dommisch, Peter Schwarz, Olga Pivovarova-Ramich","doi":"10.1038/s41366-025-01889-0","DOIUrl":null,"url":null,"abstract":"<p><p>The primary aim was to develop and assess the performance and applicability of different models utilizing sensor data to determine dietary adherence, specifically within the context of intermittent fasting. Our approach utilized time-series data from two completed human trials, which included continuous glucose monitoring, acceleration data, and food diaries, and a synthetic data set. Machine learning models achieved an average F1-score of 0.88 in distinguishing between fasting and non-fasting times, indicating a high level of reliability in classifying fasting states. The Hutchison Heuristic statistical method, while more moderate in performance, proved to be robust across different cohorts, including individuals with and without type 1 diabetes. A dashboard was developed to visualize results efficiently and in a user-friendly manner. The findings highlight the effectiveness of using sensor data, combined with advanced statistical and machine learning approaches, to passively evaluate dietary adherence in an intermittent fasting context.</p>","PeriodicalId":14183,"journal":{"name":"International Journal of Obesity","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Obesity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41366-025-01889-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

The primary aim was to develop and assess the performance and applicability of different models utilizing sensor data to determine dietary adherence, specifically within the context of intermittent fasting. Our approach utilized time-series data from two completed human trials, which included continuous glucose monitoring, acceleration data, and food diaries, and a synthetic data set. Machine learning models achieved an average F1-score of 0.88 in distinguishing between fasting and non-fasting times, indicating a high level of reliability in classifying fasting states. The Hutchison Heuristic statistical method, while more moderate in performance, proved to be robust across different cohorts, including individuals with and without type 1 diabetes. A dashboard was developed to visualize results efficiently and in a user-friendly manner. The findings highlight the effectiveness of using sensor data, combined with advanced statistical and machine learning approaches, to passively evaluate dietary adherence in an intermittent fasting context.

基于传感器的间歇性禁食评估:机器学习和统计方法。
主要目的是开发和评估利用传感器数据确定饮食依从性的不同模型的性能和适用性,特别是在间歇性禁食的背景下。我们的方法利用了两个已完成的人体试验的时间序列数据,包括连续血糖监测、加速数据、食物日记和合成数据集。机器学习模型在区分禁食和非禁食时间方面的平均f1得分为0.88,表明对禁食状态进行分类的可靠性很高。Hutchison启发式统计方法,虽然性能更温和,但在不同的队列中被证明是稳健的,包括有和没有1型糖尿病的个体。开发了一个仪表板,以便以用户友好的方式有效地将结果可视化。研究结果强调了使用传感器数据,结合先进的统计和机器学习方法,被动评估间歇性禁食背景下饮食依从性的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Obesity
International Journal of Obesity 医学-内分泌学与代谢
CiteScore
10.00
自引率
2.00%
发文量
221
审稿时长
3 months
期刊介绍: The International Journal of Obesity is a multi-disciplinary forum for research describing basic, clinical and applied studies in biochemistry, physiology, genetics and nutrition, molecular, metabolic, psychological and epidemiological aspects of obesity and related disorders. We publish a range of content types including original research articles, technical reports, reviews, correspondence and brief communications that elaborate on significant advances in the field and cover topical issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信