Differential impacts of various plant growth-promoting and osmotic tolerant bacterial strains on proline and sugar accumulation to enhance stress adaptations in tea plants.

IF 2.3 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Paritosh Baruah, Pritirekha Saikia, Jumi Gogoi, Pritom Chowdhury, Sosanka Protim Sandilya, Harisadhan Malakar, Hemanta Saikia, Sangeeta Borchetia
{"title":"Differential impacts of various plant growth-promoting and osmotic tolerant bacterial strains on proline and sugar accumulation to enhance stress adaptations in tea plants.","authors":"Paritosh Baruah, Pritirekha Saikia, Jumi Gogoi, Pritom Chowdhury, Sosanka Protim Sandilya, Harisadhan Malakar, Hemanta Saikia, Sangeeta Borchetia","doi":"10.1007/s10123-025-00709-9","DOIUrl":null,"url":null,"abstract":"<p><p>Drought stress poses a severe threat to tea plantations globally, leading to a significant reduction in yields. Use of plant growth-promoting bacteria (PGPB) has emerged as a promising strategy to alleviate the detrimental effects of water stress. This study investigates nine distinct bacterial strains, isolated from a drought-prone region in North-East India, for their plant growth-promoting (PGP) traits and their ability to mitigate osmotic stress. These strains were identified based on morphological characteristics and 16S rRNA molecular analysis. Among them, the strains-Chryseobacterium bernardetii (S<sub>4</sub>), Cytobacillus gottheilii (S<sub>5</sub>), Kitasatospora aureofaciens (S<sub>7</sub>), Kocuria palustris (A), and Brachybacterium rhamnosum (B)-exhibited higher PGP activities under osmotic stress conditions (- 0.19 MPa and - 0.93 MPa induced by PEG-6000). Additionally, K. palustris (A) and B. rhamnosum (B) demonstrate effective adaptation to oxidative stress by reducing proline accumulation and were also found to be catalase (CAT) positive. The effect of these osmotolerant PGPBs was further evaluated on tea seedlings under drought stress. Pot experiments in nursery were conducted with three treatments: a positive control (plants watered frequently), a negative control (no treatment), and eight treatments (T1-T8: bacterial inoculations). When comparing the efficacy of bacterial isolates and delivery methods-bioencapsulation and soil drenching. Treatment T6 (comprising strains S<sub>4</sub>, S<sub>5</sub>, S<sub>7</sub>, A, and B) inoculation via soil drenching method improved drought tolerance by effectively modulating osmolyte concentrations, as evidenced by a reduction in total soluble sugars compared to the negative control, highlighting their potential role as bioformulation enhancing osmotolerance and alleviating drought stress in tea plants.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10123-025-00709-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Drought stress poses a severe threat to tea plantations globally, leading to a significant reduction in yields. Use of plant growth-promoting bacteria (PGPB) has emerged as a promising strategy to alleviate the detrimental effects of water stress. This study investigates nine distinct bacterial strains, isolated from a drought-prone region in North-East India, for their plant growth-promoting (PGP) traits and their ability to mitigate osmotic stress. These strains were identified based on morphological characteristics and 16S rRNA molecular analysis. Among them, the strains-Chryseobacterium bernardetii (S4), Cytobacillus gottheilii (S5), Kitasatospora aureofaciens (S7), Kocuria palustris (A), and Brachybacterium rhamnosum (B)-exhibited higher PGP activities under osmotic stress conditions (- 0.19 MPa and - 0.93 MPa induced by PEG-6000). Additionally, K. palustris (A) and B. rhamnosum (B) demonstrate effective adaptation to oxidative stress by reducing proline accumulation and were also found to be catalase (CAT) positive. The effect of these osmotolerant PGPBs was further evaluated on tea seedlings under drought stress. Pot experiments in nursery were conducted with three treatments: a positive control (plants watered frequently), a negative control (no treatment), and eight treatments (T1-T8: bacterial inoculations). When comparing the efficacy of bacterial isolates and delivery methods-bioencapsulation and soil drenching. Treatment T6 (comprising strains S4, S5, S7, A, and B) inoculation via soil drenching method improved drought tolerance by effectively modulating osmolyte concentrations, as evidenced by a reduction in total soluble sugars compared to the negative control, highlighting their potential role as bioformulation enhancing osmotolerance and alleviating drought stress in tea plants.

不同植物促生长和耐渗透菌株对茶树脯氨酸和糖积累的差异影响。
干旱对全球茶园构成严重威胁,导致产量大幅下降。利用植物生长促进菌(plant growth-promoting bacteria, PGPB)已成为缓解水分胁迫的一种有前景的策略。这项研究调查了从印度东北部干旱易发地区分离出来的九种不同的细菌菌株,研究了它们的植物生长促进(PGP)特性和它们减轻渗透胁迫的能力。根据形态特征和16S rRNA分子分析鉴定了这些菌株。其中,在渗透胁迫条件下(PEG-6000诱导- 0.19 MPa和- 0.93 MPa), bernardetichryseobacterium (S4)、gottheilicytobacillus (S5)、Kitasatospora aureofaciens (S7)、Kocuria palustris (A)和rhamnosum (B)表现出较高的PGP活性。此外,K. palustris (A)和B. rhamnosum (B)通过减少脯氨酸积累来有效适应氧化应激,并且过氧化氢酶(CAT)也呈阳性。在干旱胁迫下,进一步评价了这些抗渗透PGPBs对茶树幼苗的影响。苗圃盆栽试验分为3个处理:阳性对照(经常浇水)、阴性对照(不浇水)和8个处理(t1 ~ t8:细菌接种)。当比较细菌分离和递送方法-生物包封和土壤淋洗的效果。通过土壤淋施法接种T6(包括菌株S4、S5、S7、A和B),通过有效调节渗透物浓度提高了茶树的耐旱性,与阴性对照相比,总可溶性糖的减少证明了这一点,突出了它们作为生物制剂增强茶树渗透耐受性和缓解干旱胁迫的潜在作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Microbiology
International Microbiology 生物-生物工程与应用微生物
CiteScore
5.50
自引率
3.20%
发文量
67
审稿时长
3 months
期刊介绍: International Microbiology publishes information on basic and applied microbiology for a worldwide readership. The journal publishes articles and short reviews based on original research, articles about microbiologists and their work and questions related to the history and sociology of this science. Also offered are perspectives, opinion, book reviews and editorials. A distinguishing feature of International Microbiology is its broadening of the term microbiology to include eukaryotic microorganisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信