{"title":"Recent Advancements in Lipid Nanoparticles-Based Phytoactives Delivery Systems for Neurodegenerative Diseases.","authors":"Amina M Dirir, Abdelmoneim Ali, Mayssa Hachem","doi":"10.2147/IJN.S537566","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodegenerative diseases, including Alzheimer's and Parkinson's diseases, pose a significant and continuous burden on the healthcare system, urging the search for innovative therapeutical approaches targeting the central nervous system. Nowadays, no definitive treatment can effectively modulate the neuronal degeneration associated with such diseases. The current line of therapies is primarily symptomatic and suffers several drawbacks. Among these, phytochemicals are emerging for their potential in the management of neurodegenerative disorders. Indeed, plants produce secondary metabolites that provide defensive functions against abiotic and biotic stresses. These metabolites can target the neurons and represent a promising therapeutic intervention for neurological disorders. However, the polar nature of phytochemicals and their large size hinder their passage through the blood-brain barrier, a selective barrier separating blood and the brain. Emerging studies have shown that the therapeutic efficiency of phytochemicals has been enhanced following their encapsulation with engineered nanocarriers such as lipid nanoparticles. Recent research indicates that delivering phytochemicals through lipid nanoparticles improves their physiological stability, promotes their passage across the blood-brain barrier, and enhances their accumulation in brain tissue-resulting in more effective neuroprotective effects than their free, unencapsulated form. Hence, the aim of the present review is to highlight the application of lipid nanoparticles as carriers for phytoactives with neuroprotective properties, discuss the current challenges associated with such nanocarriers, and provide insights into potential future research work.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"20 ","pages":"10279-10300"},"PeriodicalIF":6.5000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12396533/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJN.S537566","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neurodegenerative diseases, including Alzheimer's and Parkinson's diseases, pose a significant and continuous burden on the healthcare system, urging the search for innovative therapeutical approaches targeting the central nervous system. Nowadays, no definitive treatment can effectively modulate the neuronal degeneration associated with such diseases. The current line of therapies is primarily symptomatic and suffers several drawbacks. Among these, phytochemicals are emerging for their potential in the management of neurodegenerative disorders. Indeed, plants produce secondary metabolites that provide defensive functions against abiotic and biotic stresses. These metabolites can target the neurons and represent a promising therapeutic intervention for neurological disorders. However, the polar nature of phytochemicals and their large size hinder their passage through the blood-brain barrier, a selective barrier separating blood and the brain. Emerging studies have shown that the therapeutic efficiency of phytochemicals has been enhanced following their encapsulation with engineered nanocarriers such as lipid nanoparticles. Recent research indicates that delivering phytochemicals through lipid nanoparticles improves their physiological stability, promotes their passage across the blood-brain barrier, and enhances their accumulation in brain tissue-resulting in more effective neuroprotective effects than their free, unencapsulated form. Hence, the aim of the present review is to highlight the application of lipid nanoparticles as carriers for phytoactives with neuroprotective properties, discuss the current challenges associated with such nanocarriers, and provide insights into potential future research work.
期刊介绍:
The International Journal of Nanomedicine is a globally recognized journal that focuses on the applications of nanotechnology in the biomedical field. It is a peer-reviewed and open-access publication that covers diverse aspects of this rapidly evolving research area.
With its strong emphasis on the clinical potential of nanoparticles in disease diagnostics, prevention, and treatment, the journal aims to showcase cutting-edge research and development in the field.
Starting from now, the International Journal of Nanomedicine will not accept meta-analyses for publication.