Hot-Spot-Guided Generative Deep Learning for Drug-Like PPI Inhibitor Design.

IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Heqi Sun, Jiayi Li, Yufang Zhang, Shenggeng Lin, Junwei Chen, Hong Tan, Ruixuan Wang, Xueying Mao, Jianwei Zhao, Rongpei Li, Dong-Qing Wei
{"title":"Hot-Spot-Guided Generative Deep Learning for Drug-Like PPI Inhibitor Design.","authors":"Heqi Sun, Jiayi Li, Yufang Zhang, Shenggeng Lin, Junwei Chen, Hong Tan, Ruixuan Wang, Xueying Mao, Jianwei Zhao, Rongpei Li, Dong-Qing Wei","doi":"10.1007/s12539-025-00756-w","DOIUrl":null,"url":null,"abstract":"<p><p>Protein-protein interactions (PPIs) are essential therapeutic targets, yet their large and relatively flat interfaces hinder the development of small-molecule inhibitors. Traditional computational approaches rely heavily on existing chemical libraries or expert heuristics, restricting exploration of novel chemical space. To address these challenges, we present Hot2Mol, a generative deep learning framework for the de novo design of target-specific and drug-like PPI inhibitors. Hot2Mol captures crucial pharmacophoric features from hot-spot residues, allowing precise targeting of PPI interfaces while eliminating the need for known bioactive ligands. The framework integrates three main components: a conditional transformer for pharmacophore-guided, property-constrained molecular generation; an E(n)-equivariant graph neural network to ensure accurate spatial alignment with PPI hot-spot pharmacophores; a variational autoencoder to sample novel and diverse molecular structures. Comprehensive assessments demonstrate that Hot2Mol outperforms state-of-the-art models in binding affinity, drug-likeness, synthetic accessibility, novelty, and uniqueness. Molecular dynamics simulations further confirm the strong binding stability of generated compounds. Case studies underscore Hot2Mol's ability to design high-affinity and selective PPI inhibitors, highlighting its potential to accelerate rational PPI-targeted drug discovery.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-025-00756-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Protein-protein interactions (PPIs) are essential therapeutic targets, yet their large and relatively flat interfaces hinder the development of small-molecule inhibitors. Traditional computational approaches rely heavily on existing chemical libraries or expert heuristics, restricting exploration of novel chemical space. To address these challenges, we present Hot2Mol, a generative deep learning framework for the de novo design of target-specific and drug-like PPI inhibitors. Hot2Mol captures crucial pharmacophoric features from hot-spot residues, allowing precise targeting of PPI interfaces while eliminating the need for known bioactive ligands. The framework integrates three main components: a conditional transformer for pharmacophore-guided, property-constrained molecular generation; an E(n)-equivariant graph neural network to ensure accurate spatial alignment with PPI hot-spot pharmacophores; a variational autoencoder to sample novel and diverse molecular structures. Comprehensive assessments demonstrate that Hot2Mol outperforms state-of-the-art models in binding affinity, drug-likeness, synthetic accessibility, novelty, and uniqueness. Molecular dynamics simulations further confirm the strong binding stability of generated compounds. Case studies underscore Hot2Mol's ability to design high-affinity and selective PPI inhibitors, highlighting its potential to accelerate rational PPI-targeted drug discovery.

热点引导生成深度学习用于类药物PPI抑制剂设计。
蛋白质-蛋白质相互作用(PPIs)是必不可少的治疗靶点,但它们的大而相对平坦的界面阻碍了小分子抑制剂的发展。传统的计算方法严重依赖于现有的化学库或专家启发式,限制了对新化学空间的探索。为了解决这些挑战,我们提出了Hot2Mol,这是一个生成式深度学习框架,用于重新设计靶向特异性和药物样PPI抑制剂。Hot2Mol捕获热点残基的关键药效特征,允许精确靶向PPI界面,同时消除对已知生物活性配体的需求。该框架集成了三个主要组成部分:一个条件转换器,用于药物团引导、属性约束的分子生成;E(n)-等变图神经网络确保与PPI热点药效团的精确空间对齐;一个变分自编码器采样新的和不同的分子结构。综合评估表明,Hot2Mol在结合亲和力、药物相似性、合成可及性、新颖性和独特性方面优于最先进的模型。分子动力学模拟进一步证实了所生成化合物的强结合稳定性。案例研究强调了Hot2Mol设计高亲和力和选择性PPI抑制剂的能力,突出了其加速合理的PPI靶向药物发现的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Interdisciplinary Sciences: Computational Life Sciences
Interdisciplinary Sciences: Computational Life Sciences MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
8.60
自引率
4.20%
发文量
55
期刊介绍: Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology. The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer. The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信