Combination treatment with antioxidants and creatine alleviates common and variant-specific mitochondrial impairments in Leber's hereditary optic neuropathy patient-derived fibroblasts.

IF 3.2 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Donald Xhuti, Alessandra Chiarot, Mahek Minhas, Samantha Tobia, Nicoletta de Maat, Katherine Manta, Sean Y Ng, Mark A Tarnopolsky, Joshua P Nederveen
{"title":"Combination treatment with antioxidants and creatine alleviates common and variant-specific mitochondrial impairments in Leber's hereditary optic neuropathy patient-derived fibroblasts.","authors":"Donald Xhuti, Alessandra Chiarot, Mahek Minhas, Samantha Tobia, Nicoletta de Maat, Katherine Manta, Sean Y Ng, Mark A Tarnopolsky, Joshua P Nederveen","doi":"10.1093/hmg/ddaf125","DOIUrl":null,"url":null,"abstract":"<p><p>Leber's hereditary optic neuropathy (LHON) is characterized by painless and rapidly progressive central vision loss, caused by various mutations in mitochondrial DNA, leading to a high genetic and phenotypic heterogeneity. Currently, the only approved therapy is idebenone, a CoQ10 synthetic analogue, that improved visual acuity in some LHON patients; however, results are highly variable due its dependency on functional NAD(P)H oxidoreductase I (NQO1) protein levels, thus limiting broader applicability. Targeting the biochemical respiratory chain defect and mitigating reactive oxygen species emission using alternative treatments which act independent of NQO1 protein content, represent a promising therapeutic strategy for all LHON patients. Here, we first characterized mitochondrial biology of three distinct LHON mutations in patient-derived fibroblasts and evaluated the effects of a nutraceutical combination treatment in addressing these shared pathophysiological mechanisms. We identified a range of mitochondrial characteristics common among various LHON mutations, including higher ROS levels, altered autophagy programming, and reduced mitochondrial bioenergetics. Repeated antioxidant and creatine-based treatment (ACT) conferred a favorable stress-resistant phenotype in LHON cells, which was similar to, and in some cases superior to, the effects observed with idebenone treatment, irrespective of NQO1 protein expression. This phenotype was associated with enhanced mitochondrial biology, as evidenced by reduced reactive oxygen species levels, increased cellular respiration, and correction of autophagic flux. Overall, our findings reveal both common and divergent mitochondrial phenotypes among LHON-related mutations and highlight the potential of accessible multi-ingredient nutraceutical interventions that could benefit all LHON patients.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":"1780-1795"},"PeriodicalIF":3.2000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12529665/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human molecular genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/ddaf125","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Leber's hereditary optic neuropathy (LHON) is characterized by painless and rapidly progressive central vision loss, caused by various mutations in mitochondrial DNA, leading to a high genetic and phenotypic heterogeneity. Currently, the only approved therapy is idebenone, a CoQ10 synthetic analogue, that improved visual acuity in some LHON patients; however, results are highly variable due its dependency on functional NAD(P)H oxidoreductase I (NQO1) protein levels, thus limiting broader applicability. Targeting the biochemical respiratory chain defect and mitigating reactive oxygen species emission using alternative treatments which act independent of NQO1 protein content, represent a promising therapeutic strategy for all LHON patients. Here, we first characterized mitochondrial biology of three distinct LHON mutations in patient-derived fibroblasts and evaluated the effects of a nutraceutical combination treatment in addressing these shared pathophysiological mechanisms. We identified a range of mitochondrial characteristics common among various LHON mutations, including higher ROS levels, altered autophagy programming, and reduced mitochondrial bioenergetics. Repeated antioxidant and creatine-based treatment (ACT) conferred a favorable stress-resistant phenotype in LHON cells, which was similar to, and in some cases superior to, the effects observed with idebenone treatment, irrespective of NQO1 protein expression. This phenotype was associated with enhanced mitochondrial biology, as evidenced by reduced reactive oxygen species levels, increased cellular respiration, and correction of autophagic flux. Overall, our findings reveal both common and divergent mitochondrial phenotypes among LHON-related mutations and highlight the potential of accessible multi-ingredient nutraceutical interventions that could benefit all LHON patients.

抗氧化剂和肌酸联合治疗可减轻Leber遗传性视神经病变患者源性成纤维细胞中常见和变异特异性线粒体损伤。
Leber's遗传性视神经病变(LHON)的特点是无痛和快速进行性中央视力丧失,由线粒体DNA的各种突变引起,导致高度的遗传和表型异质性。目前,唯一被批准的治疗方法是依地苯酮,一种辅酶q10的合成类似物,可以改善一些LHON患者的视力;然而,由于其依赖于功能性NAD(P)H氧化还原酶I (NQO1)蛋白水平,结果变化很大,因此限制了更广泛的适用性。利用不依赖于NQO1蛋白含量的替代疗法,靶向生化呼吸链缺陷,减轻活性氧排放,是一种很有前景的治疗策略。在这里,我们首先表征了患者来源的成纤维细胞中三种不同的LHON突变的线粒体生物学特征,并评估了营养药物联合治疗在解决这些共同病理生理机制方面的效果。我们确定了各种LHON突变中常见的一系列线粒体特征,包括更高的ROS水平、改变的自噬程序和降低的线粒体生物能量学。重复的抗氧化和肌酸处理(ACT)在LHON细胞中赋予了有利的抗应激表型,这与伊地苯酮处理的效果相似,在某些情况下优于,而不考虑NQO1蛋白的表达。这种表型与线粒体生物学增强有关,活性氧水平降低、细胞呼吸增加和自噬通量的纠正证明了这一点。总的来说,我们的研究结果揭示了LHON相关突变中常见和不同的线粒体表型,并强调了可获得的多成分营养保健干预措施的潜力,这些干预措施可能使所有LHON患者受益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Human molecular genetics
Human molecular genetics 生物-生化与分子生物学
CiteScore
6.90
自引率
2.90%
发文量
294
审稿时长
2-4 weeks
期刊介绍: Human Molecular Genetics concentrates on full-length research papers covering a wide range of topics in all aspects of human molecular genetics. These include: the molecular basis of human genetic disease developmental genetics cancer genetics neurogenetics chromosome and genome structure and function therapy of genetic disease stem cells in human genetic disease and therapy, including the application of iPS cells genome-wide association studies mouse and other models of human diseases functional genomics computational genomics In addition, the journal also publishes research on other model systems for the analysis of genes, especially when there is an obvious relevance to human genetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信