{"title":"Tri-manual interaction in hybrid BCI-VR systems: integrating gaze, EEG control for enhanced 3D object manipulation.","authors":"Jian Teng, Sukyoung Cho, Shaw-Mung Lee","doi":"10.3389/fnbot.2025.1628968","DOIUrl":null,"url":null,"abstract":"<p><p>Brain-computer interface (BCI) integration with virtual reality (VR) has progressed from single-limb control to multi-limb coordination, yet achieving intuitive tri-manual operation remains challenging. This study presents a consumer-grade hybrid BCI-VR framework enabling simultaneous control of two biological hands and a virtual third limb through integration of Tobii eye-tracking, NeuroSky single-channel EEG, and non-haptic controllers. The system employs e-Sense attention thresholds (>80% for 300 ms) to trigger virtual hand activation combined with gaze-driven targeting within 45° visual cones. A soft maximum weighted arbitration algorithm resolves spatiotemporal conflicts between manual and virtual inputs with 92.4% success rate. Experimental validation with eight participants across 160 trials demonstrated 87.5% virtual hand success rate and 41% spatial error reduction (<i>σ</i> = 0.23 mm vs. 0.39 mm) compared to traditional dual-hand control. The framework achieved 320 ms activation latency and 22% NASA-TLX workload reduction through adaptive cognitive load management. Time-frequency analysis revealed characteristic beta-band (15-20 Hz) energy modulations during successful virtual limb control, providing neurophysiological evidence for attention-mediated supernumerary limb embodiment. These findings demonstrate that sophisticated algorithmic approaches can compensate for consumer-grade hardware limitations, enabling laboratory-grade precision in accessible tri-manual VR applications for rehabilitation, training, and assistive technologies.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"19 ","pages":"1628968"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12390853/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2025.1628968","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Brain-computer interface (BCI) integration with virtual reality (VR) has progressed from single-limb control to multi-limb coordination, yet achieving intuitive tri-manual operation remains challenging. This study presents a consumer-grade hybrid BCI-VR framework enabling simultaneous control of two biological hands and a virtual third limb through integration of Tobii eye-tracking, NeuroSky single-channel EEG, and non-haptic controllers. The system employs e-Sense attention thresholds (>80% for 300 ms) to trigger virtual hand activation combined with gaze-driven targeting within 45° visual cones. A soft maximum weighted arbitration algorithm resolves spatiotemporal conflicts between manual and virtual inputs with 92.4% success rate. Experimental validation with eight participants across 160 trials demonstrated 87.5% virtual hand success rate and 41% spatial error reduction (σ = 0.23 mm vs. 0.39 mm) compared to traditional dual-hand control. The framework achieved 320 ms activation latency and 22% NASA-TLX workload reduction through adaptive cognitive load management. Time-frequency analysis revealed characteristic beta-band (15-20 Hz) energy modulations during successful virtual limb control, providing neurophysiological evidence for attention-mediated supernumerary limb embodiment. These findings demonstrate that sophisticated algorithmic approaches can compensate for consumer-grade hardware limitations, enabling laboratory-grade precision in accessible tri-manual VR applications for rehabilitation, training, and assistive technologies.
期刊介绍:
Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.