{"title":"Population structure of Bacillus cereus sensu lato associated with foodborne outbreaks in France between 2004 and 2023.","authors":"Ksenia Mozhaitseva, Sylvie Pairaud, Olivier Firmesse, Mathilde Bonis","doi":"10.1016/j.fm.2025.104882","DOIUrl":null,"url":null,"abstract":"<p><p>Bacillus cereus sensu lato (Bcsl) is a group of closely related bacterial species known for their resistant spores, enabling them to persist in a dormant state and thereby colonize and adapt across diverse environments. Bcsl is known for its harmful impact on human health, producing toxins that cause emetic and diarrheal syndromes or provoking extradigestive infections. Importantly, Bcsl is the most frequent confirmed or presumptive causative agent associated with foodborne outbreaks (FBOs) in France. In our study, we assessed the population structure of a large collection of Bcsl isolated during FBOs investigation in France between 2004 and 2023, focusing on the association between distinct populations and food categories. Using 294 genomes from 183 FBOs, we applied genomic clustering and phylogenomic analysis and then identified three predominant Bcsl populations. B. cereus sensu stricto (17.0 %) prevailed in composite dishes, B. paranthracis (16.1 %) was positively associated with cereals, and B. thuringiensis subsp. kurstaki (7.6 %) was predominantly found in vegetable-based salads. Some strains were phylogenetically closely related to clinical isolates, highlighting the need to assess the antibiotic susceptibility of Bcsl. Notably, one Bcsl clade, B. cytotoxicus, lacking beta-lactamase-encoding genes showed a greatly increased sensitivity to ampicillin than other Bcsl considered to be naturally resistant to beta-lactams. Additionally, various strains from distinct populations showed reduced susceptibility to macrolides and cyclins. Finally, accurately differentiated populations will be used in further epidemiological studies and in dose-response modeling.</p>","PeriodicalId":12399,"journal":{"name":"Food microbiology","volume":"133 ","pages":"104882"},"PeriodicalIF":4.6000,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food microbiology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.fm.2025.104882","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacillus cereus sensu lato (Bcsl) is a group of closely related bacterial species known for their resistant spores, enabling them to persist in a dormant state and thereby colonize and adapt across diverse environments. Bcsl is known for its harmful impact on human health, producing toxins that cause emetic and diarrheal syndromes or provoking extradigestive infections. Importantly, Bcsl is the most frequent confirmed or presumptive causative agent associated with foodborne outbreaks (FBOs) in France. In our study, we assessed the population structure of a large collection of Bcsl isolated during FBOs investigation in France between 2004 and 2023, focusing on the association between distinct populations and food categories. Using 294 genomes from 183 FBOs, we applied genomic clustering and phylogenomic analysis and then identified three predominant Bcsl populations. B. cereus sensu stricto (17.0 %) prevailed in composite dishes, B. paranthracis (16.1 %) was positively associated with cereals, and B. thuringiensis subsp. kurstaki (7.6 %) was predominantly found in vegetable-based salads. Some strains were phylogenetically closely related to clinical isolates, highlighting the need to assess the antibiotic susceptibility of Bcsl. Notably, one Bcsl clade, B. cytotoxicus, lacking beta-lactamase-encoding genes showed a greatly increased sensitivity to ampicillin than other Bcsl considered to be naturally resistant to beta-lactams. Additionally, various strains from distinct populations showed reduced susceptibility to macrolides and cyclins. Finally, accurately differentiated populations will be used in further epidemiological studies and in dose-response modeling.
期刊介绍:
Food Microbiology publishes original research articles, short communications, review papers, letters, news items and book reviews dealing with all aspects of the microbiology of foods. The editors aim to publish manuscripts of the highest quality which are both relevant and applicable to the broad field covered by the journal. Studies must be novel, have a clear connection to food microbiology, and be of general interest to the international community of food microbiologists. The editors make every effort to ensure rapid and fair reviews, resulting in timely publication of accepted manuscripts.