Far-infrared radiation-mediated GPx-1/eNOS/ERK signaling contributes to the protective potential against methamphetamine-caused impairments in recognition memory in mice.

IF 2.9 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Eun-Joo Shin, Yoon Hee Chung, Bao Trong Nguyen, Naveen Sharma, Ngoc Kim Cuong Tran, Yen Nhi Doan Nguyen, Jung Hoon Park, Dae-Joong Kim, Toshitaka Nabeshima, Ji Hoon Jeong, Hyoung-Chun Kim
{"title":"Far-infrared radiation-mediated GPx-1/eNOS/ERK signaling contributes to the protective potential against methamphetamine-caused impairments in recognition memory in mice.","authors":"Eun-Joo Shin, Yoon Hee Chung, Bao Trong Nguyen, Naveen Sharma, Ngoc Kim Cuong Tran, Yen Nhi Doan Nguyen, Jung Hoon Park, Dae-Joong Kim, Toshitaka Nabeshima, Ji Hoon Jeong, Hyoung-Chun Kim","doi":"10.1080/10715762.2025.2551032","DOIUrl":null,"url":null,"abstract":"<p><p>Far-infrared radiation (FIR) induces glutathione peroxidase-1 (GPx-1) expression and enhances microcirculation by upregulating endothelial nitric oxide synthase (eNOS). However, the role of eNOS in FIR-mediated neuroprotection remains unclear. Here, we investigated whether FIR upregulates eNOS and extracellular signal-regulated kinase (ERK) signaling to mitigate recognition memory impairment caused by methamphetamine (MA). FIR significantly reduced MA-induced oxidative stress, which was primarily associated with GPx-1 inhibition. FIR or genetic overexpression of GPx-1 (GPx-1 TG) in mice significantly attenuated the MA-induced reduction in phospho-eNOS (p-eNOS) and phospho-ERK (p-ERK). Triple-label immunostaining revealed colocalization of p-eNOS, p-ERK, and GPx-1 within the same cellular populations in the prefrontal cortex. In non-transgenic (non-TG) mice, FIR exposure improved MA-induced cholinergic and memory deficits. However, FIR did not provide additional cognitive benefits in GPx-1 TG mice, and the GPx-1 inhibitor mercaptosuccinate blocked FIR-mediated cholinergic effects. Inhibitors of eNOS (i.e. L-NAME) and ERK (i.e. U0126) also significantly blocked the FIR-driven memory-enhancing effects in non-TG mice. Unlike L-NAME, which inhibits phosphorylation of both eNOS and ERK, U0126 did not affect FIR-induced eNOS phosphorylation, suggesting that eNOS is an upstream molecule for ERK signaling. Our finding suggests that GPx-1 is an essential mediator of FIR-induced memory enhancement, and that FIR exposure attenuates MA-induced cognitive impairments <i>via</i> cholinergic upregulation associated with GPx-1/eNOS/ERK signaling.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"1-25"},"PeriodicalIF":2.9000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10715762.2025.2551032","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Far-infrared radiation (FIR) induces glutathione peroxidase-1 (GPx-1) expression and enhances microcirculation by upregulating endothelial nitric oxide synthase (eNOS). However, the role of eNOS in FIR-mediated neuroprotection remains unclear. Here, we investigated whether FIR upregulates eNOS and extracellular signal-regulated kinase (ERK) signaling to mitigate recognition memory impairment caused by methamphetamine (MA). FIR significantly reduced MA-induced oxidative stress, which was primarily associated with GPx-1 inhibition. FIR or genetic overexpression of GPx-1 (GPx-1 TG) in mice significantly attenuated the MA-induced reduction in phospho-eNOS (p-eNOS) and phospho-ERK (p-ERK). Triple-label immunostaining revealed colocalization of p-eNOS, p-ERK, and GPx-1 within the same cellular populations in the prefrontal cortex. In non-transgenic (non-TG) mice, FIR exposure improved MA-induced cholinergic and memory deficits. However, FIR did not provide additional cognitive benefits in GPx-1 TG mice, and the GPx-1 inhibitor mercaptosuccinate blocked FIR-mediated cholinergic effects. Inhibitors of eNOS (i.e. L-NAME) and ERK (i.e. U0126) also significantly blocked the FIR-driven memory-enhancing effects in non-TG mice. Unlike L-NAME, which inhibits phosphorylation of both eNOS and ERK, U0126 did not affect FIR-induced eNOS phosphorylation, suggesting that eNOS is an upstream molecule for ERK signaling. Our finding suggests that GPx-1 is an essential mediator of FIR-induced memory enhancement, and that FIR exposure attenuates MA-induced cognitive impairments via cholinergic upregulation associated with GPx-1/eNOS/ERK signaling.

远红外辐射介导的GPx-1/eNOS/ERK信号对甲基苯丙胺引起的小鼠识别记忆损伤有保护作用。
远红外辐射(FIR)通过上调内皮型一氧化氮合酶(eNOS),诱导谷胱甘肽过氧化物酶-1 (GPx-1)表达,促进微循环。然而,eNOS在fir介导的神经保护中的作用尚不清楚。在这里,我们研究了FIR是否上调eNOS和细胞外信号调节激酶(ERK)信号以减轻甲基苯丙胺(MA)引起的识别记忆障碍。FIR显著降低了ma诱导的氧化应激,这主要与GPx-1抑制有关。在小鼠中,FIR或基因过表达GPx-1 (GPx-1 TG)显著减弱了ma诱导的磷酸化enos (p-eNOS)和磷酸化erk (p-ERK)的减少。三标记免疫染色显示p-eNOS、p-ERK和GPx-1在前额皮质的相同细胞群中共定位。在非转基因(非tg)小鼠中,FIR暴露改善了ma诱导的胆碱能和记忆缺陷。然而,在GPx-1 TG小鼠中,FIR并没有提供额外的认知益处,并且GPx-1抑制剂巯基琥珀酸阻断了FIR介导的胆碱能作用。在非tg小鼠中,eNOS(即L-NAME)和ERK(即U0126)抑制剂也显著阻断了fird驱动的记忆增强作用。与L-NAME抑制eNOS和ERK磷酸化不同,U0126不影响fir诱导的eNOS磷酸化,这表明eNOS是ERK信号传导的上游分子。我们的研究结果表明,GPx-1是FIR诱导的记忆增强的重要介质,并且FIR暴露通过与GPx-1/eNOS/ERK信号相关的胆碱能上调来减弱ma诱导的认知障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Free Radical Research
Free Radical Research 生物-生化与分子生物学
CiteScore
6.70
自引率
0.00%
发文量
47
审稿时长
3 months
期刊介绍: Free Radical Research publishes high-quality research papers, hypotheses and reviews in free radicals and other reactive species in biological, clinical, environmental and other systems; redox signalling; antioxidants, including diet-derived antioxidants and other relevant aspects of human nutrition; and oxidative damage, mechanisms and measurement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信