Tong Liu, Klara Li Yngve, Martyn Futter, Mike Peacock, John Strand, Stefan Bertilsson, Pia Geranmayeh
{"title":"Winter microbial community structure and methane-cycling potential in constructed agricultural wetlands across regions and microhabitats.","authors":"Tong Liu, Klara Li Yngve, Martyn Futter, Mike Peacock, John Strand, Stefan Bertilsson, Pia Geranmayeh","doi":"10.1093/femsec/fiaf086","DOIUrl":null,"url":null,"abstract":"<p><p>Constructed wetlands are widely used to reduce nutrient loading to downstream waters, but they can also emit methane, a potent greenhouse gas. This trade-off between water quality benefits and climate impacts is driven by microbial processes that remain poorly understood in winter. We examined microbial community composition and methane-cycling potential in surface water samples from constructed wetlands in two agricultural regions of Sweden during the winter season, focusing on the effects of emergent vegetation and environmental conditions. Western wetlands, characterized by higher total nitrogen and dissolved oxygen, exhibited significantly greater microbial diversity and more complex co-occurrence networks than eastern wetlands. At the phylum level, Actinobacteriota and Firmicutes were more abundant in the west, while Bacteroidota dominated the east. The effects of emergent vegetation were region-specific: in the west, vegetated zones supported higher diversity and enrichment of plant-associated taxa. Several taxa affiliated with methanotrophs showed higher relative abundance in vegetated zones of the western wetlands, suggesting vegetation may enhance methane oxidation potential in surface waters, even though methane concentrations were similar. Overall, winter microbial networks remained structured, emphasizing the need for integrated microbial and biogeochemical studies to guide wetland design features, such as vegetation and nutrient regimes, that support both methane mitigation and nutrient retention in cold-climate agricultural landscapes.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12421997/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiaf086","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Constructed wetlands are widely used to reduce nutrient loading to downstream waters, but they can also emit methane, a potent greenhouse gas. This trade-off between water quality benefits and climate impacts is driven by microbial processes that remain poorly understood in winter. We examined microbial community composition and methane-cycling potential in surface water samples from constructed wetlands in two agricultural regions of Sweden during the winter season, focusing on the effects of emergent vegetation and environmental conditions. Western wetlands, characterized by higher total nitrogen and dissolved oxygen, exhibited significantly greater microbial diversity and more complex co-occurrence networks than eastern wetlands. At the phylum level, Actinobacteriota and Firmicutes were more abundant in the west, while Bacteroidota dominated the east. The effects of emergent vegetation were region-specific: in the west, vegetated zones supported higher diversity and enrichment of plant-associated taxa. Several taxa affiliated with methanotrophs showed higher relative abundance in vegetated zones of the western wetlands, suggesting vegetation may enhance methane oxidation potential in surface waters, even though methane concentrations were similar. Overall, winter microbial networks remained structured, emphasizing the need for integrated microbial and biogeochemical studies to guide wetland design features, such as vegetation and nutrient regimes, that support both methane mitigation and nutrient retention in cold-climate agricultural landscapes.
期刊介绍:
FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology.
- Application of ecological theory to microbial ecology
- Interactions and signalling between microorganisms and with plants and animals
- Interactions between microorganisms and their physicochemical enviornment
- Microbial aspects of biogeochemical cycles and processes
- Microbial community ecology
- Phylogenetic and functional diversity of microbial communities
- Evolutionary biology of microorganisms