{"title":"tDCS-induced enhancement of cognitive flexibility in autism: role of frontal lobe and associated neural circuits.","authors":"Yanan Han, Anqin Dong, Chenyi Xia, Zhe Zhang, Wenjing Hu, Tingli He, Xinxin Cui, Chengming Xu, Hongyan Xu, Zhangying Zhou, Danmeng Cheng, Shuo Zhang, Liguo Li, Youcai Tang, Pengyuan Zheng, Xianwen Dong","doi":"10.3389/fnbeh.2025.1631236","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interaction and restricted, repetitive behaviors (RRBs). These symptoms may stem from cognitive flexibility deficits, with dysfunction in the prefrontal cortex (PFC) and related neural circuits proposed as underlying mechanisms.</p><p><strong>Objectives: </strong>This study examined whether transcranial direct current stimulation (tDCS) could enhance PFC activity and functional connectivity, thereby improving cognitive flexibility in a valproic acid (VPA)-induced ASD rat model.</p><p><strong>Methods: </strong>Pregnant Sprague-Dawley rats were administered VPA (600 mg/kg, E12.5) or saline. VPA-exposed offspring exhibiting curved tails received tDCS and underwent behavioral tests, including the three-chamber social interaction test and cross-maze rule-shifting task, while local field potentials (LFPs) were recorded. Immunohistochemistry was performed to evaluate microglial activation (Iba1 +) and synaptic density (PSD95).</p><p><strong>Results: </strong>Valproic acid -exposed offspring displayed significant social interaction deficits and impaired cognitive flexibility, alongside disrupted functional connectivity in frontal-striato-hippocampal circuits. Neuroinflammatory analysis revealed elevated Iba1+ microglial density (<i>p</i> < 0.05) and increased PSD95 expression (<i>p</i> < 0.05). After tDCS intervention, VPA rats exhibited restored sociability and cognitive performance, normalized functional connectivity, and significantly reduced microglial activation (<i>p</i> < 0.05), though PSD95 levels were unaffected.</p><p><strong>Conclusion: </strong>Our results indicate that tDCS ameliorates ASD-like phenotypes in VPA rats, potentially through microglial suppression and PFC network synchronization. These findings support neuromodulation as a promising therapeutic approach for ASD-related cognitive dysfunction.</p>","PeriodicalId":12368,"journal":{"name":"Frontiers in Behavioral Neuroscience","volume":"19 ","pages":"1631236"},"PeriodicalIF":2.9000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12378128/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Behavioral Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnbeh.2025.1631236","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interaction and restricted, repetitive behaviors (RRBs). These symptoms may stem from cognitive flexibility deficits, with dysfunction in the prefrontal cortex (PFC) and related neural circuits proposed as underlying mechanisms.
Objectives: This study examined whether transcranial direct current stimulation (tDCS) could enhance PFC activity and functional connectivity, thereby improving cognitive flexibility in a valproic acid (VPA)-induced ASD rat model.
Methods: Pregnant Sprague-Dawley rats were administered VPA (600 mg/kg, E12.5) or saline. VPA-exposed offspring exhibiting curved tails received tDCS and underwent behavioral tests, including the three-chamber social interaction test and cross-maze rule-shifting task, while local field potentials (LFPs) were recorded. Immunohistochemistry was performed to evaluate microglial activation (Iba1 +) and synaptic density (PSD95).
Results: Valproic acid -exposed offspring displayed significant social interaction deficits and impaired cognitive flexibility, alongside disrupted functional connectivity in frontal-striato-hippocampal circuits. Neuroinflammatory analysis revealed elevated Iba1+ microglial density (p < 0.05) and increased PSD95 expression (p < 0.05). After tDCS intervention, VPA rats exhibited restored sociability and cognitive performance, normalized functional connectivity, and significantly reduced microglial activation (p < 0.05), though PSD95 levels were unaffected.
Conclusion: Our results indicate that tDCS ameliorates ASD-like phenotypes in VPA rats, potentially through microglial suppression and PFC network synchronization. These findings support neuromodulation as a promising therapeutic approach for ASD-related cognitive dysfunction.
期刊介绍:
Frontiers in Behavioral Neuroscience is a leading journal in its field, publishing rigorously peer-reviewed research that advances our understanding of the neural mechanisms underlying behavior. Field Chief Editor Nuno Sousa at the Instituto de Pesquisa em Ciências da Vida e da Saúde (ICVS) is supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
This journal publishes major insights into the neural mechanisms of animal and human behavior, and welcomes articles studying the interplay between behavior and its neurobiological basis at all levels: from molecular biology and genetics, to morphological, biochemical, neurochemical, electrophysiological, neuroendocrine, pharmacological, and neuroimaging studies.