Natália Pálešová, Klára Gabrišová, Jana Babulicová, Patrik Krumpolec, Zuzana Kovaničová, Tímea Kurdiová, Salvatore Modica, Christian Wolfrum, Jozef Ukropec, Barbara Ukropcová, Miroslav Baláž
{"title":"Downregulation of microRNA-494 drives mitochondrial biogenesis and function in trained muscle.","authors":"Natália Pálešová, Klára Gabrišová, Jana Babulicová, Patrik Krumpolec, Zuzana Kovaničová, Tímea Kurdiová, Salvatore Modica, Christian Wolfrum, Jozef Ukropec, Barbara Ukropcová, Miroslav Baláž","doi":"10.1113/EP092977","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNAs (miRNAs) are key regulators of cellular processes, including mitochondrial function and energy metabolism. This study explores the regulation of miR-494 in skeletal muscle and circulation, investigating its response to exercise training and an acute exercise bout, its association with metabolic disorders, and the effects of electrical pulse stimulation (EPS). In addition, it validates the gene targets and physiological role of miR-494 using gain- and loss-of-function studies in primary human skeletal muscle cells. We demonstrate that miR-494 levels in both skeletal muscle and circulation are influenced by long-term exercise training, which induces adaptive changes, but remain unaffected by an acute bout of exercise. EPS does not alter miR-494 levels in cultured primary human skeletal muscle cells. Moreover, muscle miR-494 levels remain unchanged under various metabolic challenges, including obesity and type 2 diabetes. Genetic manipulation of miR-494 in primary human skeletal muscle cells modulates mitochondrial biogenesis and function, as well as lipid metabolism, through targeting PGC1A and SIRT1. Injection of a miR-494 inhibitor into skeletal muscle of mice supports the role of miR-494 in regulating Pgc1α mRNA, suggesting potential therapeutic implications. These findings highlight miR-494 as a significant modulator of mitochondrial dynamics and energy metabolism in skeletal muscle.</p>","PeriodicalId":12092,"journal":{"name":"Experimental Physiology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/EP092977","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
MicroRNAs (miRNAs) are key regulators of cellular processes, including mitochondrial function and energy metabolism. This study explores the regulation of miR-494 in skeletal muscle and circulation, investigating its response to exercise training and an acute exercise bout, its association with metabolic disorders, and the effects of electrical pulse stimulation (EPS). In addition, it validates the gene targets and physiological role of miR-494 using gain- and loss-of-function studies in primary human skeletal muscle cells. We demonstrate that miR-494 levels in both skeletal muscle and circulation are influenced by long-term exercise training, which induces adaptive changes, but remain unaffected by an acute bout of exercise. EPS does not alter miR-494 levels in cultured primary human skeletal muscle cells. Moreover, muscle miR-494 levels remain unchanged under various metabolic challenges, including obesity and type 2 diabetes. Genetic manipulation of miR-494 in primary human skeletal muscle cells modulates mitochondrial biogenesis and function, as well as lipid metabolism, through targeting PGC1A and SIRT1. Injection of a miR-494 inhibitor into skeletal muscle of mice supports the role of miR-494 in regulating Pgc1α mRNA, suggesting potential therapeutic implications. These findings highlight miR-494 as a significant modulator of mitochondrial dynamics and energy metabolism in skeletal muscle.
期刊介绍:
Experimental Physiology publishes research papers that report novel insights into homeostatic and adaptive responses in health, as well as those that further our understanding of pathophysiological mechanisms in disease. We encourage papers that embrace the journal’s orientation of translation and integration, including studies of the adaptive responses to exercise, acute and chronic environmental stressors, growth and aging, and diseases where integrative homeostatic mechanisms play a key role in the response to and evolution of the disease process. Examples of such diseases include hypertension, heart failure, hypoxic lung disease, endocrine and neurological disorders. We are also keen to publish research that has a translational aspect or clinical application. Comparative physiology work that can be applied to aid the understanding human physiology is also encouraged.
Manuscripts that report the use of bioinformatic, genomic, molecular, proteomic and cellular techniques to provide novel insights into integrative physiological and pathophysiological mechanisms are welcomed.