Tonoy K Mondal, Christian Baryla, Hannah Stanley, Stuart J Williams
{"title":"Proof of Concept for Flow Through Nanoparticle Trapping Using a Dielectrophoretic Metal-Coated Nanofiber Mat.","authors":"Tonoy K Mondal, Christian Baryla, Hannah Stanley, Stuart J Williams","doi":"10.1002/elps.70019","DOIUrl":null,"url":null,"abstract":"<p><p>While traditional dielectrophoretic methods for nanoparticle enrichment and filtration are versatile and selective, they struggle to handle higher throughput applications. To address this challenge and enhance the practical application of dielectrophoresis, we propose an innovative design for porous sandwiched nanofiber electrodes. The electrode is fabricated through a simple process involving the electrospinning of nanofibers with a diameter of 216 ± 28 nm and mat thickness of around 70 µm, followed by the deposition of a thin chromium/gold layer (approximately 140 nm thick) on both sides. This process ensures no electrical short circuit occurs between the electrodes, and it maintains a sheet resistance of 7.19 Ω/□. The resulting significant electric field gradients are capable of trapping nanoparticles with diameters of 100 nm and 40 nm. The structure's sub-micrometer features and large active surface area allow for trapping of nanoparticles at a flow rate of 3.6 mL/h. To evaluate the effects of applied voltage and volumetric flow rate, we conducted experiments with constant voltage while varying the flow rate and constant flow rate while varying the voltage. Our findings indicate that trapping performance improves with higher AC voltage but decreases at higher flow rates. These insights are crucial for optimizing parameters for large-scale nanoparticle enrichment and filtration. This proof-of-concept study for flow through dielectrophoresis of nanoparticles paves the way for a device suitable for large-scale sample processing and higher throughput/separation efficiency in practical settings.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELECTROPHORESIS","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/elps.70019","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
While traditional dielectrophoretic methods for nanoparticle enrichment and filtration are versatile and selective, they struggle to handle higher throughput applications. To address this challenge and enhance the practical application of dielectrophoresis, we propose an innovative design for porous sandwiched nanofiber electrodes. The electrode is fabricated through a simple process involving the electrospinning of nanofibers with a diameter of 216 ± 28 nm and mat thickness of around 70 µm, followed by the deposition of a thin chromium/gold layer (approximately 140 nm thick) on both sides. This process ensures no electrical short circuit occurs between the electrodes, and it maintains a sheet resistance of 7.19 Ω/□. The resulting significant electric field gradients are capable of trapping nanoparticles with diameters of 100 nm and 40 nm. The structure's sub-micrometer features and large active surface area allow for trapping of nanoparticles at a flow rate of 3.6 mL/h. To evaluate the effects of applied voltage and volumetric flow rate, we conducted experiments with constant voltage while varying the flow rate and constant flow rate while varying the voltage. Our findings indicate that trapping performance improves with higher AC voltage but decreases at higher flow rates. These insights are crucial for optimizing parameters for large-scale nanoparticle enrichment and filtration. This proof-of-concept study for flow through dielectrophoresis of nanoparticles paves the way for a device suitable for large-scale sample processing and higher throughput/separation efficiency in practical settings.
期刊介绍:
ELECTROPHORESIS is an international journal that publishes original manuscripts on all aspects of electrophoresis, and liquid phase separations (e.g., HPLC, micro- and nano-LC, UHPLC, micro- and nano-fluidics, liquid-phase micro-extractions, etc.).
Topics include new or improved analytical and preparative methods, sample preparation, development of theory, and innovative applications of electrophoretic and liquid phase separations methods in the study of nucleic acids, proteins, carbohydrates natural products, pharmaceuticals, food analysis, environmental species and other compounds of importance to the life sciences.
Papers in the areas of microfluidics and proteomics, which are not limited to electrophoresis-based methods, will also be accepted for publication. Contributions focused on hyphenated and omics techniques are also of interest. Proteomics is within the scope, if related to its fundamentals and new technical approaches. Proteomics applications are only considered in particular cases.
Papers describing the application of standard electrophoretic methods will not be considered.
Papers on nanoanalysis intended for publication in ELECTROPHORESIS should focus on one or more of the following topics:
• Nanoscale electrokinetics and phenomena related to electric double layer and/or confinement in nano-sized geometry
• Single cell and subcellular analysis
• Nanosensors and ultrasensitive detection aspects (e.g., involving quantum dots, "nanoelectrodes" or nanospray MS)
• Nanoscale/nanopore DNA sequencing (next generation sequencing)
• Micro- and nanoscale sample preparation
• Nanoparticles and cells analyses by dielectrophoresis
• Separation-based analysis using nanoparticles, nanotubes and nanowires.