Supraspinal commands have a modular organization that is behavioral context specific.

IF 7.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Current Biology Pub Date : 2025-09-22 Epub Date: 2025-08-22 DOI:10.1016/j.cub.2025.07.066
Joanna Y N Lau, James E Fitzgerald, Isaac H Bianco
{"title":"Supraspinal commands have a modular organization that is behavioral context specific.","authors":"Joanna Y N Lau, James E Fitzgerald, Isaac H Bianco","doi":"10.1016/j.cub.2025.07.066","DOIUrl":null,"url":null,"abstract":"<p><p>Animals generate a range of locomotor patterns that subserve diverse behaviors, and in vertebrates, the required supraspinal commands derive from reticulospinal neurons in the brainstem. Yet how these commands are encoded across the reticulospinal population is unknown, making it unclear whether a universal control logic generates the full locomotor repertoire or if distinct sets of command modules might compose movement in different behavioral contexts. Here, we used calcium imaging, high-resolution behavior tracking, and statistical modeling to comprehensively survey reticulospinal activity and relate single-cell activity to movement kinematics as larval zebrafish generated a broad diversity of swim types. We found that reticulospinal population activity had a low-dimensional organization and identified 8 functional archetypes that provided a succinct and robust encoding of the full range of locomotor actions. Across much of locomotor space, 5 functional archetypes supported multiplexed control of swim speed and independent control of direction, whereas an independent set of 3 functional archetypes controlled the specialized swims that zebrafish use during hunting to orient toward prey. Overall, our study reveals a modular supraspinal control architecture that is partitioned according to behavioral context.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":"4408-4425.e6"},"PeriodicalIF":7.5000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2025.07.066","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Animals generate a range of locomotor patterns that subserve diverse behaviors, and in vertebrates, the required supraspinal commands derive from reticulospinal neurons in the brainstem. Yet how these commands are encoded across the reticulospinal population is unknown, making it unclear whether a universal control logic generates the full locomotor repertoire or if distinct sets of command modules might compose movement in different behavioral contexts. Here, we used calcium imaging, high-resolution behavior tracking, and statistical modeling to comprehensively survey reticulospinal activity and relate single-cell activity to movement kinematics as larval zebrafish generated a broad diversity of swim types. We found that reticulospinal population activity had a low-dimensional organization and identified 8 functional archetypes that provided a succinct and robust encoding of the full range of locomotor actions. Across much of locomotor space, 5 functional archetypes supported multiplexed control of swim speed and independent control of direction, whereas an independent set of 3 functional archetypes controlled the specialized swims that zebrafish use during hunting to orient toward prey. Overall, our study reveals a modular supraspinal control architecture that is partitioned according to behavioral context.

椎管上指令具有特定于行为上下文的模块化组织。
动物产生一系列的运动模式,服务于不同的行为,在脊椎动物中,所需的椎骨上指令来自脑干的网状脊髓神经元。然而,这些指令是如何在网状脊髓群中编码的尚不清楚,这使得人们不清楚是一种通用的控制逻辑产生了完整的运动功能,还是不同的指令模块可能在不同的行为背景下组成运动。在这里,我们使用钙成像、高分辨率行为跟踪和统计建模来全面调查网状脊髓活动,并将单细胞活动与运动运动学联系起来,因为斑马鱼幼虫产生了广泛的游泳类型。我们发现网状脊髓群体活动具有低维组织,并确定了8种功能原型,这些原型提供了完整范围的运动动作的简洁而稳健的编码。在大部分运动空间中,5个功能原型支持游动速度的多重控制和方向的独立控制,而3个独立的功能原型控制斑马鱼在狩猎时使用的特定游动,以确定猎物的方向。总的来说,我们的研究揭示了一个模块化的椎骨上控制结构,该结构根据行为环境进行了划分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Biology
Current Biology 生物-生化与分子生物学
CiteScore
11.80
自引率
2.20%
发文量
869
审稿时长
46 days
期刊介绍: Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信